Constraining the Higgs potential with neural simulation-based inference for di-Higgs production

Determining the form of the Higgs potential is one of the most exciting challenges of modern particle physics. Higgs pair production directly probes the Higgs self-coupling and should be observed in the near future at the High-Luminosity LHC. We explore how to improve the sensitivity to physics beyo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Mastandrea, Radha (VerfasserIn) , Nachman, Benjamin (VerfasserIn) , Plehn, Tilman (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 3 September, 2024
In: Physical review
Year: 2024, Jahrgang: 110, Heft: 5, Pages: 1-20
ISSN:2470-0029
DOI:10.1103/PhysRevD.110.056004
Online-Zugang:Verlag, kostenfrei, Volltext: https://doi.org/10.1103/PhysRevD.110.056004
Verlag, kostenfrei, Volltext: https://link.aps.org/doi/10.1103/PhysRevD.110.056004
Volltext
Verfasserangaben:Radha Mastandrea, Benjamin Nachman, and Tilman Plehn

MARC

LEADER 00000caa a2200000 c 4500
001 1917884028
003 DE-627
005 20250716233355.0
007 cr uuu---uuuuu
008 250224s2024 xx |||||o 00| ||eng c
024 7 |a 10.1103/PhysRevD.110.056004  |2 doi 
035 |a (DE-627)1917884028 
035 |a (DE-599)KXP1917884028 
035 |a (OCoLC)1528019482 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 29  |2 sdnb 
100 1 |a Mastandrea, Radha  |e VerfasserIn  |0 (DE-588)1280526939  |0 (DE-627)1833782798  |4 aut 
245 1 0 |a Constraining the Higgs potential with neural simulation-based inference for di-Higgs production  |c Radha Mastandrea, Benjamin Nachman, and Tilman Plehn 
264 1 |c 3 September, 2024 
300 |b Illustrationen 
300 |a 20 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 24.02.2025 
520 |a Determining the form of the Higgs potential is one of the most exciting challenges of modern particle physics. Higgs pair production directly probes the Higgs self-coupling and should be observed in the near future at the High-Luminosity LHC. We explore how to improve the sensitivity to physics beyond the Standard Model through per-event kinematics for di-Higgs events. In particular, we employ machine learning through simulation-based inference to estimate per-event likelihood ratios and gauge potential sensitivity gains from including this kinematic information. In terms of the Standard Model Effective Field Theory, we find that adding a limited number of observables can help to remove degeneracies in Wilson coefficient likelihoods and significantly improve the experimental sensitivity. 
700 1 |a Nachman, Benjamin  |e VerfasserIn  |0 (DE-588)1280527072  |0 (DE-627)1833783190  |4 aut 
700 1 |a Plehn, Tilman  |d 1969-  |e VerfasserIn  |0 (DE-588)1021935573  |0 (DE-627)715839535  |0 (DE-576)363449809  |4 aut 
773 0 8 |i Enthalten in  |t Physical review  |d Ridge, NY : American Physical Society, 2016  |g 110(2024), 5, Artikel-ID 056004, Seite 1-20  |h Online-Ressource  |w (DE-627)846313510  |w (DE-600)2844732-3  |w (DE-576)454495811  |x 2470-0029  |7 nnas  |a Constraining the Higgs potential with neural simulation-based inference for di-Higgs production 
773 1 8 |g volume:110  |g year:2024  |g number:5  |g elocationid:056004  |g pages:1-20  |g extent:20  |a Constraining the Higgs potential with neural simulation-based inference for di-Higgs production 
856 4 0 |u https://doi.org/10.1103/PhysRevD.110.056004  |x Verlag  |x Resolving-System  |z kostenfrei  |3 Volltext 
856 4 0 |u https://link.aps.org/doi/10.1103/PhysRevD.110.056004  |x Verlag  |z kostenfrei  |3 Volltext 
951 |a AR 
992 |a 20250224 
993 |a Article 
994 |a 2024 
998 |g 1021935573  |a Plehn, Tilman  |m 1021935573:Plehn, Tilman  |d 130000  |d 130300  |e 130000PP1021935573  |e 130300PP1021935573  |k 0/130000/  |k 1/130000/130300/  |p 3  |y j 
999 |a KXP-PPN1917884028  |e 4670039369 
BIB |a Y 
SER |a journal 
JSO |a {"id":{"doi":["10.1103/PhysRevD.110.056004"],"eki":["1917884028"]},"origin":[{"dateIssuedDisp":"3 September, 2024","dateIssuedKey":"2024"}],"name":{"displayForm":["Radha Mastandrea, Benjamin Nachman, and Tilman Plehn"]},"relHost":[{"physDesc":[{"extent":"Online-Ressource"}],"name":{"displayForm":["published by American Physical Society"]},"origin":[{"dateIssuedDisp":"2016-","dateIssuedKey":"2016","publisher":"American Physical Society","publisherPlace":"Ridge, NY"}],"id":{"issn":["2470-0029"],"eki":["846313510"],"zdb":["2844732-3"]},"disp":"Constraining the Higgs potential with neural simulation-based inference for di-Higgs productionPhysical review","note":["Gesehen am 14.03.2023"],"type":{"media":"Online-Ressource","bibl":"periodical"},"recId":"846313510","language":["eng"],"corporate":[{"role":"isb","display":"American Physical Society","roleDisplay":"Herausgebendes Organ"}],"pubHistory":["3rd series, volume 93, number 1 (January 2016)-"],"titleAlt":[{"title":"Particles, fields, gravitation, and cosmology"}],"part":{"issue":"5","pages":"1-20","year":"2024","extent":"20","volume":"110","text":"110(2024), 5, Artikel-ID 056004, Seite 1-20"},"title":[{"title_sort":"Physical review","title":"Physical review"}]}],"physDesc":[{"extent":"20 S.","noteIll":"Illustrationen"}],"title":[{"title_sort":"Constraining the Higgs potential with neural simulation-based inference for di-Higgs production","title":"Constraining the Higgs potential with neural simulation-based inference for di-Higgs production"}],"person":[{"role":"aut","display":"Mastandrea, Radha","roleDisplay":"VerfasserIn","given":"Radha","family":"Mastandrea"},{"family":"Nachman","given":"Benjamin","display":"Nachman, Benjamin","roleDisplay":"VerfasserIn","role":"aut"},{"role":"aut","display":"Plehn, Tilman","roleDisplay":"VerfasserIn","given":"Tilman","family":"Plehn"}],"recId":"1917884028","language":["eng"],"type":{"media":"Online-Ressource","bibl":"article-journal"},"note":["Gesehen am 24.02.2025"]} 
SRT |a MASTANDREACONSTRAINI3202