Supervised discovery of interpretable gene programs from single-cell data

Abstract - - Factor analysis decomposes single-cell gene expression data into a minimal set of gene programs that correspond to processes executed by cells in a sample. However, matrix factorization methods are prone to technical artifacts and poor factor interpretability....

Full description

Saved in:
Bibliographic Details
Main Authors: Kunes, Russell Z. (Author) , Walle, Thomas (Author) , Land, Max (Author) , Nawy, Tal (Author) , Pe’er, Dana (Author)
Format: Article (Journal)
Language:English
Published: 2024
In: Nature biotechnology
Year: 2024, Volume: 42, Issue: 7, Pages: 1084-1095
ISSN:1546-1696
DOI:10.1038/s41587-023-01940-3
Online Access:Verlag, kostenfrei, Volltext: https://doi.org/10.1038/s41587-023-01940-3
Verlag, kostenfrei, Volltext: https://www.nature.com/articles/s41587-023-01940-3
Get full text
Author Notes:Russell Z. Kunes, Thomas Walle, Max Land, Tal Nawy & Dana Pe’er

MARC

LEADER 00000caa a2200000 c 4500
001 191842618X
003 DE-627
005 20250716233602.0
007 cr uuu---uuuuu
008 250224s2024 xx |||||o 00| ||eng c
024 7 |a 10.1038/s41587-023-01940-3  |2 doi 
035 |a (DE-627)191842618X 
035 |a (DE-599)KXP191842618X 
035 |a (OCoLC)1528019324 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 32  |2 sdnb 
100 1 |a Kunes, Russell Z.  |e VerfasserIn  |0 (DE-588)1357443498  |0 (DE-627)1918426651  |4 aut 
245 1 0 |a Supervised discovery of interpretable gene programs from single-cell data  |c Russell Z. Kunes, Thomas Walle, Max Land, Tal Nawy & Dana Pe’er 
264 1 |c 2024 
300 |a 40 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Online veröffentlicht: 21. September 2023 
500 |a Gesehen am 24.02.2025 
520 |a Abstract - - Factor analysis decomposes single-cell gene expression data into a minimal set of gene programs that correspond to processes executed by cells in a sample. However, matrix factorization methods are prone to technical artifacts and poor factor interpretability. We address these concerns with Spectra, an algorithm that combines user-provided gene programs with the detection of novel programs that together best explain expression covariation. Spectra incorporates existing gene sets and cell-type labels as prior biological information, explicitly models cell type and represents input gene sets as a gene-gene knowledge graph using a penalty function to guide factorization toward the input graph. We show that Spectra outperforms existing approaches in challenging tumor immune contexts, as it finds factors that change under immune checkpoint therapy, disentangles the highly correlated features of CD8 - + - T cell tumor reactivity and exhaustion, finds a program that explains continuous macrophage state changes under therapy and identifies cell-type-specific immune metabolic programs. 
700 1 |a Walle, Thomas  |e VerfasserIn  |0 (DE-588)1218265876  |0 (DE-627)1733705457  |4 aut 
700 1 |a Land, Max  |e VerfasserIn  |4 aut 
700 1 |a Nawy, Tal  |e VerfasserIn  |4 aut 
700 1 |a Pe’er, Dana  |e VerfasserIn  |4 aut 
773 0 8 |i Enthalten in  |t Nature biotechnology  |d New York, NY : Springer Nature, 1996  |g 42(2024), 7 vom: Sept., Seite 1084-1095  |h Online-Ressource  |w (DE-627)30339370X  |w (DE-600)1494943-X  |w (DE-576)080887171  |x 1546-1696  |7 nnas  |a Supervised discovery of interpretable gene programs from single-cell data 
773 1 8 |g volume:42  |g year:2024  |g number:7  |g month:09  |g pages:1084-1095  |g extent:40  |a Supervised discovery of interpretable gene programs from single-cell data 
856 4 0 |u https://doi.org/10.1038/s41587-023-01940-3  |x Verlag  |x Resolving-System  |z kostenfrei  |3 Volltext 
856 4 0 |u https://www.nature.com/articles/s41587-023-01940-3  |x Verlag  |z kostenfrei  |3 Volltext 
951 |a AR 
992 |a 20250224 
993 |a Article 
994 |a 2024 
998 |g 1218265876  |a Walle, Thomas  |m 1218265876:Walle, Thomas  |d 910000  |d 910100  |e 910000PW1218265876  |e 910100PW1218265876  |k 0/910000/  |k 1/910000/910100/  |p 2 
999 |a KXP-PPN191842618X  |e 4671280159 
BIB |a Y 
SER |a journal 
JSO |a {"relHost":[{"title":[{"title":"Nature biotechnology","title_sort":"Nature biotechnology","subtitle":"the science and business of biotechnology"}],"physDesc":[{"extent":"Online-Ressource"}],"part":{"volume":"42","text":"42(2024), 7 vom: Sept., Seite 1084-1095","issue":"7","pages":"1084-1095","year":"2024","extent":"40"},"language":["eng"],"pubHistory":["Volume 14, issue 3 (March 1996)-"],"note":["Gesehen am 18.07.2023"],"origin":[{"publisherPlace":"New York, NY ; New York, NY","dateIssuedDisp":"[1996]-","publisher":"Springer Nature ; Nature America"}],"disp":"Supervised discovery of interpretable gene programs from single-cell dataNature biotechnology","type":{"media":"Online-Ressource","bibl":"periodical"},"recId":"30339370X","id":{"issn":["1546-1696"],"zdb":["1494943-X"],"eki":["30339370X"]}}],"physDesc":[{"extent":"40 S."}],"title":[{"title_sort":"Supervised discovery of interpretable gene programs from single-cell data","title":"Supervised discovery of interpretable gene programs from single-cell data"}],"note":["Online veröffentlicht: 21. September 2023","Gesehen am 24.02.2025"],"language":["eng"],"person":[{"display":"Kunes, Russell Z.","family":"Kunes","role":"aut","given":"Russell Z."},{"given":"Thomas","role":"aut","family":"Walle","display":"Walle, Thomas"},{"display":"Land, Max","family":"Land","role":"aut","given":"Max"},{"given":"Tal","display":"Nawy, Tal","family":"Nawy","role":"aut"},{"display":"Pe’er, Dana","role":"aut","family":"Pe’er","given":"Dana"}],"id":{"eki":["191842618X"],"doi":["10.1038/s41587-023-01940-3"]},"recId":"191842618X","type":{"bibl":"article-journal","media":"Online-Ressource"},"origin":[{"dateIssuedDisp":"2024","dateIssuedKey":"2024"}],"name":{"displayForm":["Russell Z. Kunes, Thomas Walle, Max Land, Tal Nawy & Dana Pe’er"]}} 
SRT |a KUNESRUSSESUPERVISED2024