Magnetic curvature and existence of a closed magnetic geodesic on low energy levels

To a Riemannian manifold $(M,g)$ endowed with a magnetic form $\sigma $ and its Lorentz operator $\Omega $ we associate an operator $M^{\Omega }$, called the magnetic curvature operator. Such an operator encloses the classical Riemannian curvature of the metric $g$ together with terms of perturbatio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Assenza, Valerio (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: November 2024
In: International mathematics research notices
Year: 2024, Jahrgang: 2024, Heft: 21, Pages: 13586-13610
ISSN:1687-0247
DOI:10.1093/imrn/rnae209
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1093/imrn/rnae209
Volltext
Verfasserangaben:Valerio Assenza

MARC

LEADER 00000caa a2200000 c 4500
001 1918593248
003 DE-627
005 20250716233851.0
007 cr uuu---uuuuu
008 250226s2024 xx |||||o 00| ||eng c
024 7 |a 10.1093/imrn/rnae209  |2 doi 
035 |a (DE-627)1918593248 
035 |a (DE-599)KXP1918593248 
035 |a (OCoLC)1528019670 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Assenza, Valerio  |d 1992-  |e VerfasserIn  |0 (DE-588)1317608186  |0 (DE-627)1879499770  |4 aut 
245 1 0 |a Magnetic curvature and existence of a closed magnetic geodesic on low energy levels  |c Valerio Assenza 
264 1 |c November 2024 
300 |a 25 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Online veröffentlicht: 30. September 2024 
500 |a Gesehen am 26.02.2025 
520 |a To a Riemannian manifold $(M,g)$ endowed with a magnetic form $\sigma $ and its Lorentz operator $\Omega $ we associate an operator $M^{\Omega }$, called the magnetic curvature operator. Such an operator encloses the classical Riemannian curvature of the metric $g$ together with terms of perturbation due to the magnetic interaction of $\sigma $. From $M^{\Omega }$ we derive the magnetic sectional curvature $\textrm{Sec}^{\Omega }$ and the magnetic Ricci curvature $\textrm{Ric}^{\Omega }$ that generalize in arbitrary dimension the already known notion of magnetic curvature previously considered by several authors on surfaces. On closed manifolds, under the assumption of $\textrm{Ric}^{\Omega }$ being positive on an energy level below the Mañé critical value, with a Bonnet-Myers argument, we establish the existence of a contractible periodic orbit. In particular, when $\sigma $ is nowhere vanishing, this implies the existence of a contractible periodic orbit on every energy level close to zero. Finally, on closed oriented even dimensional manifolds, we discuss about the topological restrictions that appear when one requires $\textrm{Sec}^{\Omega }$ to be positive. 
773 0 8 |i Enthalten in  |t International mathematics research notices  |d Oxford : Oxford University Press, 1991  |g 2024(2024), 21 vom: Nov., Seite 13586-13610  |h Online-Ressource  |w (DE-627)265549639  |w (DE-600)1465368-0  |w (DE-576)254482201  |x 1687-0247  |7 nnas  |a Magnetic curvature and existence of a closed magnetic geodesic on low energy levels 
773 1 8 |g volume:2024  |g year:2024  |g number:21  |g month:11  |g pages:13586-13610  |g extent:25  |a Magnetic curvature and existence of a closed magnetic geodesic on low energy levels 
856 4 0 |u https://doi.org/10.1093/imrn/rnae209  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20250226 
993 |a Article 
994 |a 2024 
998 |g 1317608186  |a Assenza, Valerio  |m 1317608186:Assenza, Valerio  |p 1  |x j  |y j 
999 |a KXP-PPN1918593248  |e 4673217225 
BIB |a Y 
SER |a journal 
JSO |a {"physDesc":[{"extent":"25 S."}],"relHost":[{"title":[{"subtitle":"IMRN","title":"International mathematics research notices","title_sort":"International mathematics research notices"}],"part":{"year":"2024","issue":"21","pages":"13586-13610","text":"2024(2024), 21 vom: Nov., Seite 13586-13610","volume":"2024","extent":"25"},"titleAlt":[{"title":"IMRN"}],"pubHistory":["1991 -"],"recId":"265549639","language":["eng"],"corporate":[{"role":"isb","roleDisplay":"Herausgebendes Organ","display":"Duke University"}],"type":{"media":"Online-Ressource","bibl":"periodical"},"disp":"Magnetic curvature and existence of a closed magnetic geodesic on low energy levelsInternational mathematics research notices","note":["Gesehen am 29.01.2025"],"id":{"eki":["265549639"],"zdb":["1465368-0"],"issn":["1687-0247"]},"origin":[{"dateIssuedDisp":"1991-","dateIssuedKey":"1991","publisher":"Oxford University Press ; Duke Univ. Press ; Hindawi Publ. Corp.","publisherPlace":"Oxford ; Durham, NC ; New York, NY [u.a.]"}],"name":{"displayForm":["Duke University"]},"physDesc":[{"extent":"Online-Ressource"}]}],"name":{"displayForm":["Valerio Assenza"]},"origin":[{"dateIssuedKey":"2024","dateIssuedDisp":"November 2024"}],"id":{"doi":["10.1093/imrn/rnae209"],"eki":["1918593248"]},"type":{"bibl":"article-journal","media":"Online-Ressource"},"note":["Online veröffentlicht: 30. September 2024","Gesehen am 26.02.2025"],"language":["eng"],"recId":"1918593248","person":[{"role":"aut","display":"Assenza, Valerio","roleDisplay":"VerfasserIn","given":"Valerio","family":"Assenza"}],"title":[{"title_sort":"Magnetic curvature and existence of a closed magnetic geodesic on low energy levels","title":"Magnetic curvature and existence of a closed magnetic geodesic on low energy levels"}]} 
SRT |a ASSENZAVALMAGNETICCU2024