Magnetic curvature and existence of a closed magnetic geodesic on low energy levels
To a Riemannian manifold $(M,g)$ endowed with a magnetic form $\sigma $ and its Lorentz operator $\Omega $ we associate an operator $M^{\Omega }$, called the magnetic curvature operator. Such an operator encloses the classical Riemannian curvature of the metric $g$ together with terms of perturbatio...
Gespeichert in:
| 1. Verfasser: | |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
November 2024
|
| In: |
International mathematics research notices
Year: 2024, Jahrgang: 2024, Heft: 21, Pages: 13586-13610 |
| ISSN: | 1687-0247 |
| DOI: | 10.1093/imrn/rnae209 |
| Online-Zugang: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1093/imrn/rnae209 |
| Verfasserangaben: | Valerio Assenza |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1918593248 | ||
| 003 | DE-627 | ||
| 005 | 20250716233851.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 250226s2024 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.1093/imrn/rnae209 |2 doi | |
| 035 | |a (DE-627)1918593248 | ||
| 035 | |a (DE-599)KXP1918593248 | ||
| 035 | |a (OCoLC)1528019670 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 27 |2 sdnb | ||
| 100 | 1 | |a Assenza, Valerio |d 1992- |e VerfasserIn |0 (DE-588)1317608186 |0 (DE-627)1879499770 |4 aut | |
| 245 | 1 | 0 | |a Magnetic curvature and existence of a closed magnetic geodesic on low energy levels |c Valerio Assenza |
| 264 | 1 | |c November 2024 | |
| 300 | |a 25 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Online veröffentlicht: 30. September 2024 | ||
| 500 | |a Gesehen am 26.02.2025 | ||
| 520 | |a To a Riemannian manifold $(M,g)$ endowed with a magnetic form $\sigma $ and its Lorentz operator $\Omega $ we associate an operator $M^{\Omega }$, called the magnetic curvature operator. Such an operator encloses the classical Riemannian curvature of the metric $g$ together with terms of perturbation due to the magnetic interaction of $\sigma $. From $M^{\Omega }$ we derive the magnetic sectional curvature $\textrm{Sec}^{\Omega }$ and the magnetic Ricci curvature $\textrm{Ric}^{\Omega }$ that generalize in arbitrary dimension the already known notion of magnetic curvature previously considered by several authors on surfaces. On closed manifolds, under the assumption of $\textrm{Ric}^{\Omega }$ being positive on an energy level below the Mañé critical value, with a Bonnet-Myers argument, we establish the existence of a contractible periodic orbit. In particular, when $\sigma $ is nowhere vanishing, this implies the existence of a contractible periodic orbit on every energy level close to zero. Finally, on closed oriented even dimensional manifolds, we discuss about the topological restrictions that appear when one requires $\textrm{Sec}^{\Omega }$ to be positive. | ||
| 773 | 0 | 8 | |i Enthalten in |t International mathematics research notices |d Oxford : Oxford University Press, 1991 |g 2024(2024), 21 vom: Nov., Seite 13586-13610 |h Online-Ressource |w (DE-627)265549639 |w (DE-600)1465368-0 |w (DE-576)254482201 |x 1687-0247 |7 nnas |a Magnetic curvature and existence of a closed magnetic geodesic on low energy levels |
| 773 | 1 | 8 | |g volume:2024 |g year:2024 |g number:21 |g month:11 |g pages:13586-13610 |g extent:25 |a Magnetic curvature and existence of a closed magnetic geodesic on low energy levels |
| 856 | 4 | 0 | |u https://doi.org/10.1093/imrn/rnae209 |x Verlag |x Resolving-System |z lizenzpflichtig |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20250226 | ||
| 993 | |a Article | ||
| 994 | |a 2024 | ||
| 998 | |g 1317608186 |a Assenza, Valerio |m 1317608186:Assenza, Valerio |p 1 |x j |y j | ||
| 999 | |a KXP-PPN1918593248 |e 4673217225 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"physDesc":[{"extent":"25 S."}],"relHost":[{"title":[{"subtitle":"IMRN","title":"International mathematics research notices","title_sort":"International mathematics research notices"}],"part":{"year":"2024","issue":"21","pages":"13586-13610","text":"2024(2024), 21 vom: Nov., Seite 13586-13610","volume":"2024","extent":"25"},"titleAlt":[{"title":"IMRN"}],"pubHistory":["1991 -"],"recId":"265549639","language":["eng"],"corporate":[{"role":"isb","roleDisplay":"Herausgebendes Organ","display":"Duke University"}],"type":{"media":"Online-Ressource","bibl":"periodical"},"disp":"Magnetic curvature and existence of a closed magnetic geodesic on low energy levelsInternational mathematics research notices","note":["Gesehen am 29.01.2025"],"id":{"eki":["265549639"],"zdb":["1465368-0"],"issn":["1687-0247"]},"origin":[{"dateIssuedDisp":"1991-","dateIssuedKey":"1991","publisher":"Oxford University Press ; Duke Univ. Press ; Hindawi Publ. Corp.","publisherPlace":"Oxford ; Durham, NC ; New York, NY [u.a.]"}],"name":{"displayForm":["Duke University"]},"physDesc":[{"extent":"Online-Ressource"}]}],"name":{"displayForm":["Valerio Assenza"]},"origin":[{"dateIssuedKey":"2024","dateIssuedDisp":"November 2024"}],"id":{"doi":["10.1093/imrn/rnae209"],"eki":["1918593248"]},"type":{"bibl":"article-journal","media":"Online-Ressource"},"note":["Online veröffentlicht: 30. September 2024","Gesehen am 26.02.2025"],"language":["eng"],"recId":"1918593248","person":[{"role":"aut","display":"Assenza, Valerio","roleDisplay":"VerfasserIn","given":"Valerio","family":"Assenza"}],"title":[{"title_sort":"Magnetic curvature and existence of a closed magnetic geodesic on low energy levels","title":"Magnetic curvature and existence of a closed magnetic geodesic on low energy levels"}]} | ||
| SRT | |a ASSENZAVALMAGNETICCU2024 | ||