Photoacoustic quantification of tissue oxygenation using conditional invertible neural networks

Intelligent systems in interventional healthcare depend on the reliable perception of the environment. In this context, photoacoustic tomography (PAT) has emerged as a non-invasive, functional imaging modality with great clinical potential. Current research focuses on converting the high-dimensional...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Nölke, Jan-Hinrich (VerfasserIn) , Adler, Tim (VerfasserIn) , Schellenberg, Melanie (VerfasserIn) , Dreher, Kris (VerfasserIn) , Holzwarth, Niklas (VerfasserIn) , Bender, Christoph J. (VerfasserIn) , Tizabi, Minu (VerfasserIn) , Seitel, Alexander (VerfasserIn) , Maier-Hein, Lena (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 24 May 2024
In: IEEE transactions on medical imaging
Year: 2024, Jahrgang: 43, Heft: 9, Pages: 3366-3376
ISSN:1558-254X
DOI:10.1109/TMI.2024.3403417
Online-Zugang:Verlag, kostenfrei, Volltext: https://doi.org/10.1109/TMI.2024.3403417
Verlag, kostenfrei, Volltext: https://ieeexplore.ieee.org/document/10538320
Volltext
Verfasserangaben:Jan-Hinrich Nölke, Tim J. Adler, Melanie Schellenberg, Kris K. Dreher, Niklas Holzwarth, Christoph J. Bender, Minu D. Tizabi, Alexander Seitel, and Lena Maier-Hein

MARC

LEADER 00000caa a2200000 c 4500
001 1918607311
003 DE-627
005 20251202094842.0
007 cr uuu---uuuuu
008 250226s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TMI.2024.3403417  |2 doi 
035 |a (DE-627)1918607311 
035 |a (DE-599)KXP1918607311 
035 |a (OCoLC)1528019522 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Nölke, Jan-Hinrich  |e VerfasserIn  |0 (DE-588)1197270973  |0 (DE-627)1679066692  |4 aut 
245 1 0 |a Photoacoustic quantification of tissue oxygenation using conditional invertible neural networks  |c Jan-Hinrich Nölke, Tim J. Adler, Melanie Schellenberg, Kris K. Dreher, Niklas Holzwarth, Christoph J. Bender, Minu D. Tizabi, Alexander Seitel, and Lena Maier-Hein 
264 1 |c 24 May 2024 
300 |b Illustrationen 
300 |a 11 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 24.02.2025 
520 |a Intelligent systems in interventional healthcare depend on the reliable perception of the environment. In this context, photoacoustic tomography (PAT) has emerged as a non-invasive, functional imaging modality with great clinical potential. Current research focuses on converting the high-dimensional, not human-interpretable spectral data into the underlying functional information, specifically the blood oxygenation. One of the largely unexplored issues stalling clinical advances is the fact that the quantification problem is ambiguous, i.e. that radically different tissue parameter configurations could lead to almost identical photoacoustic spectra. In the present work, we tackle this problem with conditional Invertible Neural Networks (cINNs). Going beyond traditional point estimates, our network is used to compute an approximation of the conditional posterior density of tissue parameters given the photoacoustic spectrum. To this end, an automatic mode detection algorithm extracts the plausible solution from the sample-based posterior. According to a comprehensive validation study based on both synthetic and real images, our approach is well-suited for exploring ambiguity in quantitative PAT. 
650 4 |a Biomedical optical imaging 
650 4 |a Couplings 
650 4 |a Deep learning 
650 4 |a inverse problems 
650 4 |a invertible networks 
650 4 |a Optical imaging 
650 4 |a Optical variables measurement 
650 4 |a photoacoustic imaging 
650 4 |a Standards 
650 4 |a synthetic data 
650 4 |a tissue oxygenation 
650 4 |a Training 
650 4 |a Vectors 
700 1 |a Adler, Tim  |d 1991-  |e VerfasserIn  |0 (DE-588)1194987672  |0 (DE-627)1677181680  |4 aut 
700 1 |a Schellenberg, Melanie  |d 1994-  |e VerfasserIn  |0 (DE-588)1237779464  |0 (DE-627)176477745X  |4 aut 
700 1 |a Dreher, Kris  |e VerfasserIn  |0 (DE-588)1237780837  |0 (DE-627)176477969X  |4 aut 
700 1 |a Holzwarth, Niklas  |e VerfasserIn  |0 (DE-588)1379696747  |0 (DE-627)1939356407  |4 aut 
700 1 |a Bender, Christoph J.  |e VerfasserIn  |0 (DE-588)1379696364  |0 (DE-627)1939356164  |4 aut 
700 1 |a Tizabi, Minu  |d 1992-  |e VerfasserIn  |0 (DE-588)1140542494  |0 (DE-627)89854632X  |0 (DE-576)493859608  |4 aut 
700 1 |a Seitel, Alexander  |d 1980-  |e VerfasserIn  |0 (DE-588)1025312058  |0 (DE-627)722029861  |0 (DE-576)370197003  |4 aut 
700 1 |a Maier-Hein, Lena  |d 1980-  |e VerfasserIn  |0 (DE-588)1075029252  |0 (DE-627)832869899  |0 (DE-576)190090804  |4 aut 
773 0 8 |i Enthalten in  |a Institute of Electrical and Electronics Engineers  |t IEEE transactions on medical imaging  |d New York, NY : Institute of Electrical and Electronics Engineers,, 1982  |g 43(2024), 9, Seite 3366-3376  |h Online-Ressource  |w (DE-627)341354759  |w (DE-600)2068206-2  |w (DE-576)105283061  |x 1558-254X  |7 nnas 
773 1 8 |g volume:43  |g year:2024  |g number:9  |g pages:3366-3376  |g extent:11  |a Photoacoustic quantification of tissue oxygenation using conditional invertible neural networks 
856 4 0 |u https://doi.org/10.1109/TMI.2024.3403417  |x Verlag  |x Resolving-System  |z kostenfrei  |3 Volltext 
856 4 0 |u https://ieeexplore.ieee.org/document/10538320  |x Verlag  |z kostenfrei  |3 Volltext 
951 |a AR 
992 |a 20250226 
993 |a Article 
994 |a 2024 
998 |g 1075029252  |a Maier-Hein, Lena  |m 1075029252:Maier-Hein, Lena  |d 910000  |d 910200  |e 910000PM1075029252  |e 910200PM1075029252  |k 0/910000/  |k 1/910000/910200/  |p 9  |y j 
998 |g 1237780837  |a Dreher, Kris  |m 1237780837:Dreher, Kris  |d 130000  |e 130000PD1237780837  |k 0/130000/  |p 4 
999 |a KXP-PPN1918607311  |e 4673281322 
BIB |a Y 
SER |a journal 
JSO |a {"physDesc":[{"extent":"11 S.","noteIll":"Illustrationen"}],"id":{"eki":["1918607311"],"doi":["10.1109/TMI.2024.3403417"]},"type":{"bibl":"article-journal","media":"Online-Ressource"},"note":["Gesehen am 24.02.2025"],"relHost":[{"title":[{"title":"IEEE transactions on medical imaging","subtitle":"a publication of the IEEE Engineering in Medicine and Biology Society ...","title_sort":"IEEE transactions on medical imaging"}],"corporate":[{"role":"aut","display":"Institute of Electrical and Electronics Engineers"}],"origin":[{"dateIssuedKey":"1982","publisherPlace":"New York, NY ; New York, NY","publisher":"Institute of Electrical and Electronics Engineers, ; IEEE","dateIssuedDisp":"1982-"}],"note":["Gesehen am 13.01.11"],"part":{"extent":"11","issue":"9","text":"43(2024), 9, Seite 3366-3376","volume":"43","year":"2024","pages":"3366-3376"},"id":{"zdb":["2068206-2"],"issn":["1558-254X"],"eki":["341354759"]},"physDesc":[{"extent":"Online-Ressource"}],"titleAlt":[{"title":"Transactions on medical imaging"}],"language":["eng"],"recId":"341354759","disp":"Institute of Electrical and Electronics EngineersIEEE transactions on medical imaging","type":{"media":"Online-Ressource","bibl":"periodical"},"pubHistory":["1.1982(July) -"]}],"person":[{"role":"aut","family":"Nölke","display":"Nölke, Jan-Hinrich","given":"Jan-Hinrich"},{"role":"aut","given":"Tim","display":"Adler, Tim","family":"Adler"},{"family":"Schellenberg","display":"Schellenberg, Melanie","given":"Melanie","role":"aut"},{"role":"aut","display":"Dreher, Kris","given":"Kris","family":"Dreher"},{"family":"Holzwarth","given":"Niklas","display":"Holzwarth, Niklas","role":"aut"},{"family":"Bender","display":"Bender, Christoph J.","given":"Christoph J.","role":"aut"},{"family":"Tizabi","given":"Minu","display":"Tizabi, Minu","role":"aut"},{"display":"Seitel, Alexander","given":"Alexander","family":"Seitel","role":"aut"},{"given":"Lena","display":"Maier-Hein, Lena","family":"Maier-Hein","role":"aut"}],"name":{"displayForm":["Jan-Hinrich Nölke, Tim J. Adler, Melanie Schellenberg, Kris K. Dreher, Niklas Holzwarth, Christoph J. Bender, Minu D. Tizabi, Alexander Seitel, and Lena Maier-Hein"]},"origin":[{"dateIssuedKey":"2024","dateIssuedDisp":"24 May 2024"}],"recId":"1918607311","title":[{"title":"Photoacoustic quantification of tissue oxygenation using conditional invertible neural networks","title_sort":"Photoacoustic quantification of tissue oxygenation using conditional invertible neural networks"}],"language":["eng"]} 
SRT |a NOELKEJANHPHOTOACOUS2420