Six-dimensional supermultiplets from bundles on projective spaces

The projective variety of square-zero elements in the six-dimensional minimal supersymmetry algebra is isomorphic to P1xP3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek}...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Hahner, Fabian (VerfasserIn) , Noja, Simone (VerfasserIn) , Saberi, Ingmar (VerfasserIn) , Walcher, Johannes (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: February 2025
In: Communications in mathematical physics
Year: 2025, Jahrgang: 406, Heft: 2, Pages: 1-52
ISSN:1432-0916
DOI:10.1007/s00220-024-05176-3
Online-Zugang:Verlag, kostenfrei, Volltext: https://doi.org/10.1007/s00220-024-05176-3
Verlag, kostenfrei, Volltext: https://link.springer.com/article/10.1007/s00220-024-05176-3
Volltext
Verfasserangaben:Fabian Hahner, Simone Noja, Ingmar Saberi, Johannes Walcher

MARC

LEADER 00000caa a2200000 c 4500
001 191905507X
003 DE-627
005 20250716235124.0
007 cr uuu---uuuuu
008 250304s2025 xx |||||o 00| ||eng c
024 7 |a 10.1007/s00220-024-05176-3  |2 doi 
035 |a (DE-627)191905507X 
035 |a (DE-599)KXP191905507X 
035 |a (OCoLC)1528020152 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Hahner, Fabian  |d 1997-  |e VerfasserIn  |0 (DE-588)1269922556  |0 (DE-627)1818378906  |4 aut 
245 1 0 |a Six-dimensional supermultiplets from bundles on projective spaces  |c Fabian Hahner, Simone Noja, Ingmar Saberi, Johannes Walcher 
264 1 |c February 2025 
300 |b Formeln 
300 |a 52 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 04.03.2025 
500 |a Online öffentlicht: 11. Januar 2025 
520 |a The projective variety of square-zero elements in the six-dimensional minimal supersymmetry algebra is isomorphic to P1xP3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {P}<^>1 \times \mathbb {P}<^>3$$\end{document}. We use this fact, together with the pure spinor superfield formalism, to study supermultiplets in six dimensions, starting from vector bundles on projective spaces. We classify all multiplets whose derived invariants for the supertranslation algebra form a line bundle over the nilpotence variety; one can think of such multiplets as being those whose holomorphic twists have rank one over Dolbeault forms on spacetime. In addition, we explicitly construct multiplets associated to natural higher-rank equivariant vector bundles, including the tangent and normal bundles as well as their duals. Among the multiplets constructed are the vector multiplet and hypermultiplet, the family of O(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {O}}(n)$$\end{document}-multiplets, and the supergravity and gravitino multiplets. Along the way, we tackle various theoretical problems within the pure spinor superfield formalism. In particular, we give some general discussion about the relation of the projective nilpotence variety to multiplets and prove general results on short exact sequences and dualities of sheaves in the context of the pure spinor superfield formalism. 
650 4 |a CATEGORIES 
650 4 |a D-BRANES 
650 4 |a PURE SPINORS 
650 4 |a SUPERGRAVITY 
700 1 |a Noja, Simone  |e VerfasserIn  |0 (DE-588)1234615118  |0 (DE-627)175947486X  |4 aut 
700 1 |8 1\p  |a Saberi, Ingmar  |e VerfasserIn  |0 (DE-588)1155601335  |0 (DE-627)1017875413  |0 (DE-576)501768211  |4 aut 
700 1 |a Walcher, Johannes  |d 1973-  |e VerfasserIn  |0 (DE-588)1089078978  |0 (DE-627)85098114X  |0 (DE-576)459955098  |4 aut 
773 0 8 |i Enthalten in  |t Communications in mathematical physics  |d Berlin : Springer, 1965  |g 406(2025), 2, Artikel-ID 31, Seite 1-52  |h Online-Ressource  |w (DE-627)253721628  |w (DE-600)1458931-X  |w (DE-576)072372184  |x 1432-0916  |7 nnas  |a Six-dimensional supermultiplets from bundles on projective spaces 
773 1 8 |g volume:406  |g year:2025  |g number:2  |g elocationid:31  |g pages:1-52  |g extent:52  |a Six-dimensional supermultiplets from bundles on projective spaces 
856 4 0 |u https://doi.org/10.1007/s00220-024-05176-3  |x Verlag  |x Resolving-System  |z kostenfrei  |3 Volltext 
856 4 0 |u https://link.springer.com/article/10.1007/s00220-024-05176-3  |x Verlag  |z kostenfrei  |3 Volltext 
883 |8 1\p  |a cgwrk  |d 20250403  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
951 |a AR 
992 |a 20250304 
993 |a Article 
994 |a 2025 
998 |g 1089078978  |a Walcher, Johannes  |m 1089078978:Walcher, Johannes  |d 110000  |d 110400  |e 110000PW1089078978  |e 110400PW1089078978  |k 0/110000/  |k 1/110000/110400/  |p 4  |y j 
998 |g 1234615118  |a Noja, Simone  |m 1234615118:Noja, Simone  |p 2 
998 |g 1269922556  |a Hahner, Fabian  |m 1269922556:Hahner, Fabian  |p 1  |x j 
999 |a KXP-PPN191905507X  |e 4682258303 
BIB |a Y 
SER |a journal 
JSO |a {"title":[{"title_sort":"Six-dimensional supermultiplets from bundles on projective spaces","title":"Six-dimensional supermultiplets from bundles on projective spaces"}],"person":[{"role":"aut","display":"Hahner, Fabian","roleDisplay":"VerfasserIn","given":"Fabian","family":"Hahner"},{"role":"aut","display":"Noja, Simone","roleDisplay":"VerfasserIn","given":"Simone","family":"Noja"},{"given":"Ingmar","family":"Saberi","role":"aut","roleDisplay":"VerfasserIn","display":"Saberi, Ingmar"},{"role":"aut","roleDisplay":"VerfasserIn","display":"Walcher, Johannes","given":"Johannes","family":"Walcher"}],"language":["eng"],"recId":"191905507X","note":["Gesehen am 04.03.2025","Online öffentlicht: 11. Januar 2025"],"type":{"media":"Online-Ressource","bibl":"article-journal"},"id":{"eki":["191905507X"],"doi":["10.1007/s00220-024-05176-3"]},"origin":[{"dateIssuedKey":"2025","dateIssuedDisp":"February 2025"}],"name":{"displayForm":["Fabian Hahner, Simone Noja, Ingmar Saberi, Johannes Walcher"]},"relHost":[{"title":[{"title":"Communications in mathematical physics","title_sort":"Communications in mathematical physics"}],"pubHistory":["1.1965 -"],"titleAlt":[{"title":"Mathematical physics"}],"part":{"year":"2025","pages":"1-52","issue":"2","volume":"406","text":"406(2025), 2, Artikel-ID 31, Seite 1-52","extent":"52"},"note":["Gesehen am 18.04.08"],"disp":"Six-dimensional supermultiplets from bundles on projective spacesCommunications in mathematical physics","type":{"media":"Online-Ressource","bibl":"periodical"},"recId":"253721628","language":["eng"],"origin":[{"dateIssuedDisp":"1965-","dateIssuedKey":"1965","publisher":"Springer","publisherPlace":"Berlin ; Heidelberg"}],"id":{"eki":["253721628"],"zdb":["1458931-X"],"issn":["1432-0916"]},"physDesc":[{"extent":"Online-Ressource"}]}],"physDesc":[{"extent":"52 S.","noteIll":"Formeln"}]} 
SRT |a HAHNERFABISIXDIMENSI2025