Neural network reconstruction of density and velocity fields from the 2MASS Redshift Survey

Aims. Our aim is to reconstruct the 3D matter density and peculiar velocity fields in the local Universe up to a distance of 200 h−1 Mpc from the Two-Micron All-Sky Redshift Survey (2MRS) using a neural network (NN).Methods. We employed an NN with a U-net autoencoder architecture and a weighted mean...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Lilow, Robert (VerfasserIn) , Veena, Punyakoti Ganeshaiah (VerfasserIn) , Nusser, Adi (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: September 2024
In: Astronomy and astrophysics
Year: 2024, Jahrgang: 689, Pages: 1-16
ISSN:1432-0746
DOI:10.1051/0004-6361/202450219
Online-Zugang:Verlag, kostenfrei, Volltext: https://doi.org/10.1051/0004-6361/202450219
Verlag, kostenfrei, Volltext: https://www.aanda.org/articles/aa/abs/2024/09/aa50219-24/aa50219-24.html
Volltext
Verfasserangaben:Robert Lilow, Punyakoti Ganeshaiah Veena, and Adi Nusser

MARC

LEADER 00000caa a2200000 c 4500
001 1919152768
003 DE-627
005 20250716235314.0
007 cr uuu---uuuuu
008 250305s2024 xx |||||o 00| ||eng c
024 7 |a 10.1051/0004-6361/202450219  |2 doi 
035 |a (DE-627)1919152768 
035 |a (DE-599)KXP1919152768 
035 |a (OCoLC)1528020201 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 29  |2 sdnb 
100 1 |a Lilow, Robert  |d 1990-  |e VerfasserIn  |0 (DE-588)1103050400  |0 (DE-627)86066094X  |0 (DE-576)470236620  |4 aut 
245 1 0 |a Neural network reconstruction of density and velocity fields from the 2MASS Redshift Survey  |c Robert Lilow, Punyakoti Ganeshaiah Veena, and Adi Nusser 
264 1 |c September 2024 
300 |b Illustrationen 
300 |a 16 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Online veröffentlicht: 17. September 2024 
500 |a Gesehen am 05.03.2025 
520 |a Aims. Our aim is to reconstruct the 3D matter density and peculiar velocity fields in the local Universe up to a distance of 200 h−1 Mpc from the Two-Micron All-Sky Redshift Survey (2MRS) using a neural network (NN).Methods. We employed an NN with a U-net autoencoder architecture and a weighted mean squared error loss function trained separately to output either the density or velocity field for a given input grid of galaxy number counts. The NN was trained on mocks derived from the Quijote N-body simulations, incorporating redshift-space distortions (RSDs), galaxy bias, and selection effects closely mimicking the characteristics of 2MRS. The trained NN was benchmarked against a standard Wiener filter (WF) on a validation set of mocks before applying it to 2MRS. Results. The NN reconstructions effectively approximate the mean posterior estimate of the true density and velocity fields conditioned on the observations. They consistently outperform the WF in terms of reconstruction accuracy and effectively capture the nonlinear relation between velocity and density. The NN-reconstructed bulk flow of the total survey volume exhibits a significant correlation with the true mock bulk flow, demonstrating that the NN is sensitive to information on “super-survey” scales encoded in the RSDs. When applied to 2MRS, the NN successfully recovers the main known clusters, some of which are partially in the Zone of Avoidance. The reconstructed bulk flows in spheres of different radii less than 100 h−1 Mpc are in good agreement with a previous 2MRS analysis that required an additional external bulk flow component inferred from directly observed peculiar velocities. The NN-reconstructed peculiar velocity of the Local Group closely matches the observed Cosmic Microwave Background dipole in amplitude and Galactic latitude, and only deviates by 18° in longitude. The NN-reconstructed fields are publicly available. 
700 1 |a Veena, Punyakoti Ganeshaiah  |e VerfasserIn  |4 aut 
700 1 |a Nusser, Adi  |e VerfasserIn  |4 aut 
773 0 8 |i Enthalten in  |t Astronomy and astrophysics  |d Les Ulis : EDP Sciences, 1969  |g 689(2024) vom: Sept., Artikel-ID A226, Seite 1-16  |h Online-Ressource  |w (DE-627)253390222  |w (DE-600)1458466-9  |w (DE-576)072283351  |x 1432-0746  |7 nnas  |a Neural network reconstruction of density and velocity fields from the 2MASS Redshift Survey 
773 1 8 |g volume:689  |g year:2024  |g month:09  |g elocationid:A226  |g pages:1-16  |g extent:16  |a Neural network reconstruction of density and velocity fields from the 2MASS Redshift Survey 
856 4 0 |u https://doi.org/10.1051/0004-6361/202450219  |x Verlag  |x Resolving-System  |z kostenfrei  |3 Volltext 
856 4 0 |u https://www.aanda.org/articles/aa/abs/2024/09/aa50219-24/aa50219-24.html  |x Verlag  |z kostenfrei  |3 Volltext 
951 |a AR 
992 |a 20250305 
993 |a Article 
994 |a 2024 
998 |g 1103050400  |a Lilow, Robert  |m 1103050400:Lilow, Robert  |p 1  |x j 
999 |a KXP-PPN1919152768  |e 4682968726 
BIB |a Y 
SER |a journal 
JSO |a {"name":{"displayForm":["Robert Lilow, Punyakoti Ganeshaiah Veena, and Adi Nusser"]},"origin":[{"dateIssuedKey":"2024","dateIssuedDisp":"September 2024"}],"id":{"eki":["1919152768"],"doi":["10.1051/0004-6361/202450219"]},"physDesc":[{"extent":"16 S.","noteIll":"Illustrationen"}],"relHost":[{"pubHistory":["1.1969 -"],"part":{"volume":"689","text":"689(2024) vom: Sept., Artikel-ID A226, Seite 1-16","extent":"16","year":"2024","pages":"1-16"},"titleAlt":[{"title":"Astronomy & astrophysics"},{"title":"a European journal"}],"disp":"Neural network reconstruction of density and velocity fields from the 2MASS Redshift SurveyAstronomy and astrophysics","note":["Gesehen am 21.06.2024","Erscheint 36mal jährlich in 12 Bänden zu je 3 Ausgaben","Fortsetzung der Druck-Ausgabe"],"type":{"media":"Online-Ressource","bibl":"periodical"},"recId":"253390222","corporate":[{"role":"isb","display":"European Southern Observatory","roleDisplay":"Herausgebendes Organ"}],"language":["eng"],"title":[{"title_sort":"Astronomy and astrophysics","title":"Astronomy and astrophysics","subtitle":"an international weekly journal"}],"physDesc":[{"extent":"Online-Ressource"}],"origin":[{"dateIssuedKey":"1969","publisher":"EDP Sciences ; Springer","dateIssuedDisp":"1969-","publisherPlace":"Les Ulis ; Berlin ; Heidelberg"}],"id":{"zdb":["1458466-9"],"eki":["253390222"],"issn":["1432-0746"]},"name":{"displayForm":["European Southern Observatory (ESO)"]}}],"person":[{"display":"Lilow, Robert","roleDisplay":"VerfasserIn","role":"aut","family":"Lilow","given":"Robert"},{"given":"Punyakoti Ganeshaiah","family":"Veena","role":"aut","display":"Veena, Punyakoti Ganeshaiah","roleDisplay":"VerfasserIn"},{"roleDisplay":"VerfasserIn","display":"Nusser, Adi","role":"aut","family":"Nusser","given":"Adi"}],"title":[{"title_sort":"Neural network reconstruction of density and velocity fields from the 2MASS Redshift Survey","title":"Neural network reconstruction of density and velocity fields from the 2MASS Redshift Survey"}],"type":{"bibl":"article-journal","media":"Online-Ressource"},"note":["Online veröffentlicht: 17. September 2024","Gesehen am 05.03.2025"],"recId":"1919152768","language":["eng"]} 
SRT |a LILOWROBERNEURALNETW2024