CNN-based transfer learning for forest aboveground biomass prediction from ALS point cloud tomography

This study presents a new approach for predicting forest aboveground biomass (AGB) from airborne laser scanning (ALS) data: AGB is predicted from sequences of images depicting vertical cross-sections through the ALS point clouds. A 3D version of the VGG16 convolutional neural network (CNN) with init...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Schäfer, Jannika (VerfasserIn) , Winiwarter, Lukas (VerfasserIn) , Weiser, Hannah (VerfasserIn) , Höfle, Bernhard (VerfasserIn) , Schmidtlein, Sebastian (VerfasserIn) , Novotný, Jan (VerfasserIn) , Krok, Grzegorz (VerfasserIn) , Stereńczak, Krzysztof (VerfasserIn) , Hollaus, Markus (VerfasserIn) , Fassnacht, Fabian Ewald (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 08 Sep 2024
In: European journal of remote sensing
Year: 2024, Jahrgang: 57, Heft: 1, Pages: 1-18
ISSN:2279-7254
DOI:10.1080/22797254.2024.2396932
Online-Zugang:Verlag, kostenfrei, Volltext: https://doi.org/10.1080/22797254.2024.2396932
Volltext
Verfasserangaben:Jannika Schäfer, Lukas Winiwarter, Hannah Weiser, Bernhard Höfle, Sebastian Schmidtlein, Jan Novotný, Grzegorz Krok, Krzysztof Stereńczak, Markus Hollaus and Fabian Ewald Fassnacht

MARC

LEADER 00000caa a2200000 c 4500
001 1919292314
003 DE-627
005 20250716235625.0
007 cr uuu---uuuuu
008 250307s2024 xx |||||o 00| ||eng c
024 7 |a 10.1080/22797254.2024.2396932  |2 doi 
035 |a (DE-627)1919292314 
035 |a (DE-599)KXP1919292314 
035 |a (OCoLC)1528019772 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 31  |2 sdnb 
100 1 |a Schäfer, Jannika  |e VerfasserIn  |0 (DE-588)1317313690  |0 (DE-627)1879045591  |4 aut 
245 1 0 |a CNN-based transfer learning for forest aboveground biomass prediction from ALS point cloud tomography  |c Jannika Schäfer, Lukas Winiwarter, Hannah Weiser, Bernhard Höfle, Sebastian Schmidtlein, Jan Novotný, Grzegorz Krok, Krzysztof Stereńczak, Markus Hollaus and Fabian Ewald Fassnacht 
264 1 |c 08 Sep 2024 
300 |b Illustrationen 
300 |a 18 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 07.03.2025 
520 |a This study presents a new approach for predicting forest aboveground biomass (AGB) from airborne laser scanning (ALS) data: AGB is predicted from sequences of images depicting vertical cross-sections through the ALS point clouds. A 3D version of the VGG16 convolutional neural network (CNN) with initial weights transferred from pre-training on the ImageNet dataset was used. The approach was tested on datasets from Canada, Poland, and the Czech Republic. To analyse the effect of training sample size on model performance, different-sized samples ranging from 10 to 375 ground plots were used. The CNNs were compared with random forest models (RFs) trained on point cloud metrics. At the maximum number of training samples, the difference in RMSE between observed and predicted AGB of CNNs and RFs ranged from −2 t/ha to 5 t/ha, and the difference in squared Pearson correlation coefficient ranged from −0.05 to 0.06. Additional pre-training on synthetic data derived from virtual laser scanning of simulated forest stands could only improve the prediction performance of the CNNs when only a few real training samples (10-40) were available. While 3D CNNs trained on cross-section images derived from real data showed promising results, RFs remain a competitive alternative. 
650 4 |a airborne laser scanning (ALS) 
650 4 |a deep learning 
650 4 |a Forest 
650 4 |a random forest 
650 4 |a synthetic data 
650 4 |a virtual laser scanning 
700 1 |a Winiwarter, Lukas  |e VerfasserIn  |4 aut 
700 1 |a Weiser, Hannah  |e VerfasserIn  |0 (DE-588)1244932566  |0 (DE-627)1776004736  |4 aut 
700 1 |a Höfle, Bernhard  |e VerfasserIn  |0 (DE-588)1019895403  |0 (DE-627)691049297  |0 (DE-576)358986753  |4 aut 
700 1 |8 1\p  |a Schmidtlein, Sebastian  |d 1965-  |e VerfasserIn  |0 (DE-588)1329182723  |0 (DE-627)1888412399  |4 aut 
700 1 |a Novotný, Jan  |e VerfasserIn  |4 aut 
700 1 |a Krok, Grzegorz  |e VerfasserIn  |4 aut 
700 1 |a Stereńczak, Krzysztof  |e VerfasserIn  |4 aut 
700 1 |a Hollaus, Markus  |e VerfasserIn  |4 aut 
700 1 |a Fassnacht, Fabian Ewald  |e VerfasserIn  |4 aut 
773 0 8 |i Enthalten in  |t European journal of remote sensing  |d Florence : geoLAB, Laboratory of Geomatics, 2012  |g 57(2024), 1, Artikel-ID 2396932, Seite 1-18  |h Online-Ressource  |w (DE-627)718297792  |w (DE-600)2668963-7  |w (DE-576)36770062X  |x 2279-7254  |7 nnas  |a CNN-based transfer learning for forest aboveground biomass prediction from ALS point cloud tomography 
773 1 8 |g volume:57  |g year:2024  |g number:1  |g elocationid:2396932  |g pages:1-18  |g extent:18  |a CNN-based transfer learning for forest aboveground biomass prediction from ALS point cloud tomography 
856 4 0 |u https://doi.org/10.1080/22797254.2024.2396932  |x Verlag  |x Resolving-System  |z kostenfrei  |3 Volltext 
883 |8 1\p  |a cgwrk  |d 20250403  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
951 |a AR 
992 |a 20250307 
993 |a Article 
994 |a 2024 
998 |g 1019895403  |a Höfle, Bernhard  |m 1019895403:Höfle, Bernhard  |d 120000  |d 120700  |e 120000PH1019895403  |e 120700PH1019895403  |k 0/120000/  |k 1/120000/120700/  |p 4 
998 |g 1244932566  |a Weiser, Hannah  |m 1244932566:Weiser, Hannah  |d 120000  |d 120700  |e 120000PW1244932566  |e 120700PW1244932566  |k 0/120000/  |k 1/120000/120700/  |p 3 
999 |a KXP-PPN1919292314  |e 4683769107 
BIB |a Y 
SER |a journal 
JSO |a {"origin":[{"dateIssuedKey":"2024","dateIssuedDisp":"08 Sep 2024"}],"language":["eng"],"id":{"eki":["1919292314"],"doi":["10.1080/22797254.2024.2396932"]},"type":{"bibl":"article-journal","media":"Online-Ressource"},"relHost":[{"pubHistory":["44/45.2012 -"],"note":["Gesehen am 27.06.12"],"recId":"718297792","disp":"CNN-based transfer learning for forest aboveground biomass prediction from ALS point cloud tomographyEuropean journal of remote sensing","part":{"issue":"1","year":"2024","extent":"18","pages":"1-18","text":"57(2024), 1, Artikel-ID 2396932, Seite 1-18","volume":"57"},"physDesc":[{"extent":"Online-Ressource"}],"title":[{"title_sort":"European journal of remote sensing","title":"European journal of remote sensing"}],"id":{"eki":["718297792"],"issn":["2279-7254"],"zdb":["2668963-7"]},"type":{"bibl":"periodical","media":"Online-Ressource"},"language":["eng"],"origin":[{"publisher":"geoLAB, Laboratory of Geomatics","dateIssuedKey":"2012","dateIssuedDisp":"2012-","publisherPlace":"Florence"}]}],"person":[{"role":"aut","display":"Schäfer, Jannika","family":"Schäfer","given":"Jannika"},{"role":"aut","given":"Lukas","display":"Winiwarter, Lukas","family":"Winiwarter"},{"family":"Weiser","display":"Weiser, Hannah","given":"Hannah","role":"aut"},{"role":"aut","given":"Bernhard","display":"Höfle, Bernhard","family":"Höfle"},{"family":"Schmidtlein","display":"Schmidtlein, Sebastian","given":"Sebastian","role":"aut"},{"given":"Jan","display":"Novotný, Jan","family":"Novotný","role":"aut"},{"given":"Grzegorz","family":"Krok","display":"Krok, Grzegorz","role":"aut"},{"role":"aut","given":"Krzysztof","display":"Stereńczak, Krzysztof","family":"Stereńczak"},{"display":"Hollaus, Markus","family":"Hollaus","given":"Markus","role":"aut"},{"given":"Fabian Ewald","display":"Fassnacht, Fabian Ewald","family":"Fassnacht","role":"aut"}],"title":[{"title":"CNN-based transfer learning for forest aboveground biomass prediction from ALS point cloud tomography","title_sort":"CNN-based transfer learning for forest aboveground biomass prediction from ALS point cloud tomography"}],"physDesc":[{"noteIll":"Illustrationen","extent":"18 S."}],"note":["Gesehen am 07.03.2025"],"recId":"1919292314","name":{"displayForm":["Jannika Schäfer, Lukas Winiwarter, Hannah Weiser, Bernhard Höfle, Sebastian Schmidtlein, Jan Novotný, Grzegorz Krok, Krzysztof Stereńczak, Markus Hollaus and Fabian Ewald Fassnacht"]}} 
SRT |a SCHAEFERJACNNBASEDTR0820