Relative entropy and mutual information in Gaussian statistical field theory

Relative entropy is a powerful measure of the dissimilarity between two statistical field theories in the continuum. In this work, we study the relative entropy between Gaussian scalar field theories in a finite volume with different masses and boundary conditions. We show that the relative entropy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Schröfl, Markus (VerfasserIn) , Flörchinger, Stefan (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 17 December 2024
In: Annales Henri Poincaré
Year: 2024, Pages: 1-87
ISSN:1424-0661
DOI:10.1007/s00023-024-01522-2
Online-Zugang:Verlag, kostenfrei, Volltext: https://doi.org/10.1007/s00023-024-01522-2
Volltext
Verfasserangaben:Markus Schröfl and Stefan Floerchinger

MARC

LEADER 00000caa a22000002c 4500
001 1919313451
003 DE-627
005 20250716235734.0
007 cr uuu---uuuuu
008 250307s2024 xx |||||o 00| ||eng c
024 7 |a 10.1007/s00023-024-01522-2  |2 doi 
035 |a (DE-627)1919313451 
035 |a (DE-599)KXP1919313451 
035 |a (OCoLC)1528020258 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 29  |2 sdnb 
100 1 |a Schröfl, Markus  |d 1995-  |e VerfasserIn  |0 (DE-588)1337720496  |0 (DE-627)1897556233  |4 aut 
245 1 0 |a Relative entropy and mutual information in Gaussian statistical field theory  |c Markus Schröfl and Stefan Floerchinger 
264 1 |c 17 December 2024 
300 |b Illustrationen 
300 |a 87 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 07.03.2025 
520 |a Relative entropy is a powerful measure of the dissimilarity between two statistical field theories in the continuum. In this work, we study the relative entropy between Gaussian scalar field theories in a finite volume with different masses and boundary conditions. We show that the relative entropy depends crucially on d, the dimension of Euclidean space. Furthermore, we demonstrate that the mutual information between two disjoint regions in $$\mathbb {R}^d$$is finite if the two regions are separated by a finite distance and satisfies an area law. We then construct an example of “touching” regions between which the mutual information is infinite. We argue that the properties of mutual information in scalar field theories can be explained by the Markov property of these theories. 
700 1 |a Flörchinger, Stefan  |d 1982-  |e VerfasserIn  |0 (DE-588)138826374  |0 (DE-627)606153586  |0 (DE-576)309263549  |4 aut 
773 0 8 |i Enthalten in  |a Institut Henri Poincaré  |t Annales Henri Poincaré  |d Cham (ZG) : Springer International Publishing AG, 2000  |g (2024), Seite 1-87  |h Online-Ressource  |w (DE-627)31862012X  |w (DE-600)2019605-2  |w (DE-576)091020670  |x 1424-0661  |7 nnas 
773 1 8 |g year:2024  |g pages:1-87  |g extent:87  |a Relative entropy and mutual information in Gaussian statistical field theory 
856 4 0 |u https://doi.org/10.1007/s00023-024-01522-2  |x Verlag  |x Resolving-System  |z kostenfrei  |3 Volltext 
951 |a AR 
992 |a 20250307 
993 |a Article 
994 |a 2024 
998 |g 1337720496  |a Schröfl, Markus  |m 1337720496:Schröfl, Markus  |p 1  |x j 
999 |a KXP-PPN1919313451  |e 4683848023 
BIB |a Y 
SER |a journal 
JSO |a {"relHost":[{"recId":"31862012X","physDesc":[{"extent":"Online-Ressource"}],"id":{"zdb":["2019605-2"],"issn":["1424-0661"],"eki":["31862012X"]},"language":["eng"],"type":{"bibl":"periodical","media":"Online-Ressource"},"title":[{"subtitle":"a journal of theoretical and mathematical physics","title":"Annales Henri Poincaré","title_sort":"Annales Henri Poincaré"}],"note":["Gesehen am 25.10.04"],"pubHistory":["1.2000 -"],"disp":"Institut Henri PoincaréAnnales Henri Poincaré","origin":[{"dateIssuedKey":"2000","publisherPlace":"Cham (ZG) ; Basel ; Berlin [u.a.] ; Basel","dateIssuedDisp":"2000-","publisher":"Springer International Publishing AG ; Birkhäuser ; Springer Basel AG"}],"corporate":[{"display":"Institut Henri Poincaré","roleDisplay":"VerfasserIn","role":"aut"}],"part":{"year":"2024","text":"(2024), Seite 1-87","pages":"1-87","extent":"87"}}],"name":{"displayForm":["Markus Schröfl and Stefan Floerchinger"]},"origin":[{"dateIssuedDisp":"17 December 2024","dateIssuedKey":"2024"}],"type":{"bibl":"article-journal","media":"Online-Ressource"},"title":[{"title":"Relative entropy and mutual information in Gaussian statistical field theory","title_sort":"Relative entropy and mutual information in Gaussian statistical field theory"}],"person":[{"role":"aut","given":"Markus","display":"Schröfl, Markus","family":"Schröfl","roleDisplay":"VerfasserIn"},{"roleDisplay":"VerfasserIn","display":"Flörchinger, Stefan","family":"Flörchinger","given":"Stefan","role":"aut"}],"note":["Gesehen am 07.03.2025"],"recId":"1919313451","physDesc":[{"extent":"87 S.","noteIll":"Illustrationen"}],"language":["eng"],"id":{"eki":["1919313451"],"doi":["10.1007/s00023-024-01522-2"]}} 
SRT |a SCHROEFLMARELATIVEEN1720