Relative entropy and mutual information in Gaussian statistical field theory
Relative entropy is a powerful measure of the dissimilarity between two statistical field theories in the continuum. In this work, we study the relative entropy between Gaussian scalar field theories in a finite volume with different masses and boundary conditions. We show that the relative entropy...
Gespeichert in:
| Hauptverfasser: | , |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
17 December 2024
|
| In: |
Annales Henri Poincaré
Year: 2024, Pages: 1-87 |
| ISSN: | 1424-0661 |
| DOI: | 10.1007/s00023-024-01522-2 |
| Online-Zugang: | Verlag, kostenfrei, Volltext: https://doi.org/10.1007/s00023-024-01522-2 |
| Verfasserangaben: | Markus Schröfl and Stefan Floerchinger |
MARC
| LEADER | 00000caa a22000002c 4500 | ||
|---|---|---|---|
| 001 | 1919313451 | ||
| 003 | DE-627 | ||
| 005 | 20250716235734.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 250307s2024 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.1007/s00023-024-01522-2 |2 doi | |
| 035 | |a (DE-627)1919313451 | ||
| 035 | |a (DE-599)KXP1919313451 | ||
| 035 | |a (OCoLC)1528020258 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 29 |2 sdnb | ||
| 100 | 1 | |a Schröfl, Markus |d 1995- |e VerfasserIn |0 (DE-588)1337720496 |0 (DE-627)1897556233 |4 aut | |
| 245 | 1 | 0 | |a Relative entropy and mutual information in Gaussian statistical field theory |c Markus Schröfl and Stefan Floerchinger |
| 264 | 1 | |c 17 December 2024 | |
| 300 | |b Illustrationen | ||
| 300 | |a 87 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Gesehen am 07.03.2025 | ||
| 520 | |a Relative entropy is a powerful measure of the dissimilarity between two statistical field theories in the continuum. In this work, we study the relative entropy between Gaussian scalar field theories in a finite volume with different masses and boundary conditions. We show that the relative entropy depends crucially on d, the dimension of Euclidean space. Furthermore, we demonstrate that the mutual information between two disjoint regions in $$\mathbb {R}^d$$is finite if the two regions are separated by a finite distance and satisfies an area law. We then construct an example of “touching” regions between which the mutual information is infinite. We argue that the properties of mutual information in scalar field theories can be explained by the Markov property of these theories. | ||
| 700 | 1 | |a Flörchinger, Stefan |d 1982- |e VerfasserIn |0 (DE-588)138826374 |0 (DE-627)606153586 |0 (DE-576)309263549 |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |a Institut Henri Poincaré |t Annales Henri Poincaré |d Cham (ZG) : Springer International Publishing AG, 2000 |g (2024), Seite 1-87 |h Online-Ressource |w (DE-627)31862012X |w (DE-600)2019605-2 |w (DE-576)091020670 |x 1424-0661 |7 nnas |
| 773 | 1 | 8 | |g year:2024 |g pages:1-87 |g extent:87 |a Relative entropy and mutual information in Gaussian statistical field theory |
| 856 | 4 | 0 | |u https://doi.org/10.1007/s00023-024-01522-2 |x Verlag |x Resolving-System |z kostenfrei |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20250307 | ||
| 993 | |a Article | ||
| 994 | |a 2024 | ||
| 998 | |g 1337720496 |a Schröfl, Markus |m 1337720496:Schröfl, Markus |p 1 |x j | ||
| 999 | |a KXP-PPN1919313451 |e 4683848023 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"relHost":[{"recId":"31862012X","physDesc":[{"extent":"Online-Ressource"}],"id":{"zdb":["2019605-2"],"issn":["1424-0661"],"eki":["31862012X"]},"language":["eng"],"type":{"bibl":"periodical","media":"Online-Ressource"},"title":[{"subtitle":"a journal of theoretical and mathematical physics","title":"Annales Henri Poincaré","title_sort":"Annales Henri Poincaré"}],"note":["Gesehen am 25.10.04"],"pubHistory":["1.2000 -"],"disp":"Institut Henri PoincaréAnnales Henri Poincaré","origin":[{"dateIssuedKey":"2000","publisherPlace":"Cham (ZG) ; Basel ; Berlin [u.a.] ; Basel","dateIssuedDisp":"2000-","publisher":"Springer International Publishing AG ; Birkhäuser ; Springer Basel AG"}],"corporate":[{"display":"Institut Henri Poincaré","roleDisplay":"VerfasserIn","role":"aut"}],"part":{"year":"2024","text":"(2024), Seite 1-87","pages":"1-87","extent":"87"}}],"name":{"displayForm":["Markus Schröfl and Stefan Floerchinger"]},"origin":[{"dateIssuedDisp":"17 December 2024","dateIssuedKey":"2024"}],"type":{"bibl":"article-journal","media":"Online-Ressource"},"title":[{"title":"Relative entropy and mutual information in Gaussian statistical field theory","title_sort":"Relative entropy and mutual information in Gaussian statistical field theory"}],"person":[{"role":"aut","given":"Markus","display":"Schröfl, Markus","family":"Schröfl","roleDisplay":"VerfasserIn"},{"roleDisplay":"VerfasserIn","display":"Flörchinger, Stefan","family":"Flörchinger","given":"Stefan","role":"aut"}],"note":["Gesehen am 07.03.2025"],"recId":"1919313451","physDesc":[{"extent":"87 S.","noteIll":"Illustrationen"}],"language":["eng"],"id":{"eki":["1919313451"],"doi":["10.1007/s00023-024-01522-2"]}} | ||
| SRT | |a SCHROEFLMARELATIVEEN1720 | ||