Self-supervised learning of wrist-worn daily living accelerometer data improves the automated detection of gait in older adults

Progressive gait impairment is common among aging adults. Remote phenotyping of gait during daily living has the potential to quantify gait alterations and evaluate the effects of interventions that may prevent disability in the aging population. Here, we developed ElderNet, a self-supervised learni...

Full description

Saved in:
Bibliographic Details
Main Authors: Brand, Yonatan E. (Author) , Kluge, Felix (Author) , Palmerini, Luca (Author) , Paraschiv-Ionescu, Anisoara (Author) , Becker, Clemens (Author) , Cereatti, Andrea (Author) , Maetzler, Walter (Author) , Sharrack, Basil (Author) , Vereijken, Beatrix (Author) , Yarnall, Alison J. (Author) , Rochester, Lynn (Author) , Del Din, Silvia (Author) , Muller, Arne (Author) , Buchman, Aron S. (Author) , Hausdorff, Jeffrey M. (Author) , Perlman, Or (Author)
Format: Article (Journal)
Language:English
Published: 06 September 2024
In: Scientific reports
Year: 2024, Volume: 14, Pages: 1-15
ISSN:2045-2322
DOI:10.1038/s41598-024-71491-3
Online Access:Verlag, kostenfrei, Volltext: https://doi.org/10.1038/s41598-024-71491-3
Verlag, kostenfrei, Volltext: https://www.nature.com/articles/s41598-024-71491-3
Get full text
Author Notes:Yonatan E. Brand, Felix Kluge, Luca Palmerini, Anisoara Paraschiv-Ionescu, Clemens Becker, Andrea Cereatti, Walter Maetzler, Basil Sharrack, Beatrix Vereijken, Alison J. Yarnall, Lynn Rochester, Silvia Del Din, Arne Muller, Aron S. Buchman, Jeffrey M. Hausdorff & Or Perlman

MARC

LEADER 00000caa a2200000 c 4500
001 1919439951
003 DE-627
005 20250717000128.0
007 cr uuu---uuuuu
008 250310s2024 xx |||||o 00| ||eng c
024 7 |a 10.1038/s41598-024-71491-3  |2 doi 
035 |a (DE-627)1919439951 
035 |a (DE-599)KXP1919439951 
035 |a (OCoLC)1528020105 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Brand, Yonatan E.  |e VerfasserIn  |0 (DE-588)1359375570  |0 (DE-627)191944209X  |4 aut 
245 1 0 |a Self-supervised learning of wrist-worn daily living accelerometer data improves the automated detection of gait in older adults  |c Yonatan E. Brand, Felix Kluge, Luca Palmerini, Anisoara Paraschiv-Ionescu, Clemens Becker, Andrea Cereatti, Walter Maetzler, Basil Sharrack, Beatrix Vereijken, Alison J. Yarnall, Lynn Rochester, Silvia Del Din, Arne Muller, Aron S. Buchman, Jeffrey M. Hausdorff & Or Perlman 
264 1 |c 06 September 2024 
300 |b Illustrationen 
300 |a 15 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 10.03.2025 
520 |a Progressive gait impairment is common among aging adults. Remote phenotyping of gait during daily living has the potential to quantify gait alterations and evaluate the effects of interventions that may prevent disability in the aging population. Here, we developed ElderNet, a self-supervised learning model for gait detection from wrist-worn accelerometer data. Validation involved two diverse cohorts, including over 1000 participants without gait labels, as well as 83 participants with labeled data: older adults with Parkinson's disease, proximal femoral fracture, chronic obstructive pulmonary disease, congestive heart failure, and healthy adults. ElderNet presented high accuracy (96.43 ± 2.27), specificity (98.87 ± 2.15), recall (82.32 ± 11.37), precision (86.69 ± 17.61), and F1 score (82.92 ± 13.39). The suggested method yielded superior performance compared to two state-of-the-art gait detection algorithms, with improved accuracy and F1 score (p < 0.05). In an initial evaluation of construct validity, ElderNet identified differences in estimated daily walking durations across cohorts with different clinical characteristics, such as mobility disability (p < 0.001) and parkinsonism (p < 0.001). The proposed self-supervised method has the potential to serve as a valuable tool for remote phenotyping of gait function during daily living in aging adults, even among those with gait impairments. 
650 4 |a Biomedical engineering 
650 4 |a Geriatrics 
650 4 |a Neurological disorders 
700 1 |a Kluge, Felix  |e VerfasserIn  |4 aut 
700 1 |a Palmerini, Luca  |e VerfasserIn  |4 aut 
700 1 |a Paraschiv-Ionescu, Anisoara  |e VerfasserIn  |4 aut 
700 1 |a Becker, Clemens  |d 1955-  |e VerfasserIn  |0 (DE-588)132099349  |0 (DE-627)517894327  |0 (DE-576)298943506  |4 aut 
700 1 |a Cereatti, Andrea  |e VerfasserIn  |4 aut 
700 1 |a Maetzler, Walter  |d 1971-  |e VerfasserIn  |0 (DE-588)142990590  |0 (DE-627)641422229  |0 (DE-576)334510708  |4 aut 
700 1 |a Sharrack, Basil  |e VerfasserIn  |4 aut 
700 1 |a Vereijken, Beatrix  |e VerfasserIn  |4 aut 
700 1 |a Yarnall, Alison J.  |e VerfasserIn  |4 aut 
700 1 |a Rochester, Lynn  |e VerfasserIn  |4 aut 
700 1 |a Del Din, Silvia  |e VerfasserIn  |4 aut 
700 1 |a Muller, Arne  |e VerfasserIn  |4 aut 
700 1 |a Buchman, Aron S.  |e VerfasserIn  |4 aut 
700 1 |a Hausdorff, Jeffrey M.  |e VerfasserIn  |4 aut 
700 1 |a Perlman, Or  |e VerfasserIn  |4 aut 
773 0 8 |i Enthalten in  |t Scientific reports  |d [London] : Springer Nature, 2011  |g 14(2024), Artikel-ID 20854, Seite 1-15  |h Online-Ressource  |w (DE-627)663366712  |w (DE-600)2615211-3  |w (DE-576)346641179  |x 2045-2322  |7 nnas  |a Self-supervised learning of wrist-worn daily living accelerometer data improves the automated detection of gait in older adults 
773 1 8 |g volume:14  |g year:2024  |g elocationid:20854  |g pages:1-15  |g extent:15  |a Self-supervised learning of wrist-worn daily living accelerometer data improves the automated detection of gait in older adults 
856 4 0 |u https://doi.org/10.1038/s41598-024-71491-3  |x Verlag  |x Resolving-System  |z kostenfrei  |3 Volltext 
856 4 0 |u https://www.nature.com/articles/s41598-024-71491-3  |x Verlag  |z kostenfrei  |3 Volltext 
951 |a AR 
992 |a 20250310 
993 |a Article 
994 |a 2024 
998 |g 132099349  |a Becker, Clemens  |m 132099349:Becker, Clemens  |d 50000  |e 50000PB132099349  |k 0/50000/  |p 5 
999 |a KXP-PPN1919439951  |e 4685746066 
BIB |a Y 
SER |a journal 
JSO |a {"person":[{"roleDisplay":"VerfasserIn","display":"Brand, Yonatan E.","role":"aut","family":"Brand","given":"Yonatan E."},{"given":"Felix","family":"Kluge","role":"aut","roleDisplay":"VerfasserIn","display":"Kluge, Felix"},{"display":"Palmerini, Luca","roleDisplay":"VerfasserIn","role":"aut","family":"Palmerini","given":"Luca"},{"family":"Paraschiv-Ionescu","given":"Anisoara","roleDisplay":"VerfasserIn","display":"Paraschiv-Ionescu, Anisoara","role":"aut"},{"role":"aut","display":"Becker, Clemens","roleDisplay":"VerfasserIn","given":"Clemens","family":"Becker"},{"roleDisplay":"VerfasserIn","display":"Cereatti, Andrea","role":"aut","family":"Cereatti","given":"Andrea"},{"given":"Walter","family":"Maetzler","role":"aut","display":"Maetzler, Walter","roleDisplay":"VerfasserIn"},{"role":"aut","display":"Sharrack, Basil","roleDisplay":"VerfasserIn","given":"Basil","family":"Sharrack"},{"given":"Beatrix","family":"Vereijken","role":"aut","roleDisplay":"VerfasserIn","display":"Vereijken, Beatrix"},{"role":"aut","roleDisplay":"VerfasserIn","display":"Yarnall, Alison J.","given":"Alison J.","family":"Yarnall"},{"given":"Lynn","family":"Rochester","role":"aut","roleDisplay":"VerfasserIn","display":"Rochester, Lynn"},{"display":"Del Din, Silvia","roleDisplay":"VerfasserIn","role":"aut","family":"Del Din","given":"Silvia"},{"role":"aut","display":"Muller, Arne","roleDisplay":"VerfasserIn","given":"Arne","family":"Muller"},{"role":"aut","roleDisplay":"VerfasserIn","display":"Buchman, Aron S.","given":"Aron S.","family":"Buchman"},{"given":"Jeffrey M.","family":"Hausdorff","role":"aut","roleDisplay":"VerfasserIn","display":"Hausdorff, Jeffrey M."},{"role":"aut","display":"Perlman, Or","roleDisplay":"VerfasserIn","given":"Or","family":"Perlman"}],"title":[{"title":"Self-supervised learning of wrist-worn daily living accelerometer data improves the automated detection of gait in older adults","title_sort":"Self-supervised learning of wrist-worn daily living accelerometer data improves the automated detection of gait in older adults"}],"note":["Gesehen am 10.03.2025"],"type":{"bibl":"article-journal","media":"Online-Ressource"},"recId":"1919439951","language":["eng"],"name":{"displayForm":["Yonatan E. Brand, Felix Kluge, Luca Palmerini, Anisoara Paraschiv-Ionescu, Clemens Becker, Andrea Cereatti, Walter Maetzler, Basil Sharrack, Beatrix Vereijken, Alison J. Yarnall, Lynn Rochester, Silvia Del Din, Arne Muller, Aron S. Buchman, Jeffrey M. Hausdorff & Or Perlman"]},"origin":[{"dateIssuedDisp":"06 September 2024","dateIssuedKey":"2024"}],"id":{"eki":["1919439951"],"doi":["10.1038/s41598-024-71491-3"]},"physDesc":[{"extent":"15 S.","noteIll":"Illustrationen"}],"relHost":[{"id":{"issn":["2045-2322"],"zdb":["2615211-3"],"eki":["663366712"]},"origin":[{"publisherPlace":"[London] ; London","dateIssuedDisp":"2011-","publisher":"Springer Nature ; Nature Publishing Group","dateIssuedKey":"2011"}],"physDesc":[{"extent":"Online-Ressource"}],"title":[{"title_sort":"Scientific reports","title":"Scientific reports"}],"recId":"663366712","language":["eng"],"note":["Gesehen am 12.07.24"],"type":{"media":"Online-Ressource","bibl":"periodical"},"disp":"Self-supervised learning of wrist-worn daily living accelerometer data improves the automated detection of gait in older adultsScientific reports","part":{"year":"2024","pages":"1-15","text":"14(2024), Artikel-ID 20854, Seite 1-15","volume":"14","extent":"15"},"pubHistory":["1, article number 1 (2011)-"]}]} 
SRT |a BRANDYONATSELFSUPERV0620