pyM2aia: Python interface for mass spectrometry imaging with focus on deep learning

Python is the most commonly used language for deep learning (DL). Existing Python packages for mass spectrometry imaging (MSI) data are not optimized for DL tasks. We, therefore, introduce pyM2aia, a Python package for MSI data analysis with a focus on memory-efficient handling, processing and conve...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Cordes, Jonas (VerfasserIn) , Enzlein, Thomas (VerfasserIn) , Hopf, Carsten (VerfasserIn) , Wolf, Ivo (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: March 2024
In: Bioinformatics
Year: 2024, Jahrgang: 40, Heft: 3, Pages: 1-3
ISSN:1367-4811
DOI:10.1093/bioinformatics/btae133
Online-Zugang:Verlag, kostenfrei, Volltext: https://doi.org/10.1093/bioinformatics/btae133
Volltext
Verfasserangaben:Jonas Cordes, Thomas Enzlein, Carsten Hopf, Ivo Wolf

MARC

LEADER 00000caa a2200000 c 4500
001 1919626468
003 DE-627
005 20250717000803.0
007 cr uuu---uuuuu
008 250312s2024 xx |||||o 00| ||eng c
024 7 |a 10.1093/bioinformatics/btae133  |2 doi 
035 |a (DE-627)1919626468 
035 |a (DE-599)KXP1919626468 
035 |a (OCoLC)1528042881 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Cordes, Jonas  |d 1990-  |e VerfasserIn  |0 (DE-588)1359584056  |0 (DE-627)1919626387  |4 aut 
245 1 0 |a pyM2aia: Python interface for mass spectrometry imaging with focus on deep learning  |c Jonas Cordes, Thomas Enzlein, Carsten Hopf, Ivo Wolf 
264 1 |c March 2024 
300 |b Illustrationen 
300 |a 3 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Online verfügbar: 5. März 2024 
500 |a Gesehen am 12.03.2025 
520 |a Python is the most commonly used language for deep learning (DL). Existing Python packages for mass spectrometry imaging (MSI) data are not optimized for DL tasks. We, therefore, introduce pyM2aia, a Python package for MSI data analysis with a focus on memory-efficient handling, processing and convenient data-access for DL applications. pyM2aia provides interfaces to its parent application M2aia, which offers interactive capabilities for exploring and annotating MSI data in imzML format. pyM2aia utilizes the image input and output routines, data formats, and processing functions of M2aia, ensures data interchangeability, and enables the writing of readable and easy-to-maintain DL pipelines by providing batch generators for typical MSI data access strategies. We showcase the package in several examples, including imzML metadata parsing, signal processing, ion-image generation, and, in particular, DL model training and inference for spectrum-wise approaches, ion-image-based approaches, and approaches that use spectral and spatial information simultaneously.Python package, code and examples are available at (https://m2aia.github.io/m2aia) 
700 1 |a Enzlein, Thomas  |e VerfasserIn  |0 (DE-588)1353427064  |0 (DE-627)1914650964  |4 aut 
700 1 |a Hopf, Carsten  |d 1967-  |e VerfasserIn  |0 (DE-588)120834588  |0 (DE-627)705023869  |0 (DE-576)180073133  |4 aut 
700 1 |a Wolf, Ivo  |d 1973-  |e VerfasserIn  |0 (DE-588)12485186X  |0 (DE-627)366973533  |0 (DE-576)29453511X  |4 aut 
773 0 8 |i Enthalten in  |t Bioinformatics  |d Oxford : Oxford Univ. Press, 1998  |g 40(2024), 3, Artikel-ID btae133, Seite 1-3  |h Online-Ressource  |w (DE-627)266884857  |w (DE-600)1468345-3  |w (DE-576)079420133  |x 1367-4811  |7 nnas  |a pyM2aia: Python interface for mass spectrometry imaging with focus on deep learning 
773 1 8 |g volume:40  |g year:2024  |g number:3  |g elocationid:btae133  |g pages:1-3  |g extent:3  |a pyM2aia: Python interface for mass spectrometry imaging with focus on deep learning 
856 4 0 |u https://doi.org/10.1093/bioinformatics/btae133  |x Verlag  |x Resolving-System  |z kostenfrei  |3 Volltext 
951 |a AR 
992 |a 20250312 
993 |a Article 
994 |a 2024 
998 |g 12485186X  |a Wolf, Ivo  |m 12485186X:Wolf, Ivo  |p 4  |y j 
998 |g 1359584056  |a Cordes, Jonas  |m 1359584056:Cordes, Jonas  |d 60000  |e 60000PC1359584056  |k 0/60000/  |p 1  |x j 
999 |a KXP-PPN1919626468  |e 4686320534 
BIB |a Y 
SER |a journal 
JSO |a {"note":["Online verfügbar: 5. März 2024","Gesehen am 12.03.2025"],"origin":[{"dateIssuedDisp":"March 2024","dateIssuedKey":"2024"}],"person":[{"family":"Cordes","given":"Jonas","display":"Cordes, Jonas","role":"aut"},{"display":"Enzlein, Thomas","role":"aut","given":"Thomas","family":"Enzlein"},{"display":"Hopf, Carsten","role":"aut","given":"Carsten","family":"Hopf"},{"role":"aut","display":"Wolf, Ivo","given":"Ivo","family":"Wolf"}],"title":[{"title_sort":"pyM2aia: Python interface for mass spectrometry imaging with focus on deep learning","title":"pyM2aia: Python interface for mass spectrometry imaging with focus on deep learning"}],"relHost":[{"id":{"zdb":["1468345-3"],"issn":["1367-4811"],"eki":["266884857"]},"pubHistory":["14.1998 -"],"recId":"266884857","physDesc":[{"extent":"Online-Ressource"}],"note":["Gesehen am 26.07.2023","Fortsetzung der Druck-Ausgabe"],"origin":[{"dateIssuedKey":"1998","publisherPlace":"Oxford","dateIssuedDisp":"1998-","publisher":"Oxford Univ. Press"}],"disp":"pyM2aia: Python interface for mass spectrometry imaging with focus on deep learningBioinformatics","type":{"media":"Online-Ressource","bibl":"periodical"},"language":["eng"],"titleAlt":[{"title":"Bioinformatics online"}],"title":[{"title":"Bioinformatics","title_sort":"Bioinformatics"}],"part":{"pages":"1-3","text":"40(2024), 3, Artikel-ID btae133, Seite 1-3","issue":"3","volume":"40","year":"2024","extent":"3"}}],"physDesc":[{"noteIll":"Illustrationen","extent":"3 S."}],"type":{"media":"Online-Ressource","bibl":"article-journal"},"name":{"displayForm":["Jonas Cordes, Thomas Enzlein, Carsten Hopf, Ivo Wolf"]},"language":["eng"],"recId":"1919626468","id":{"doi":["10.1093/bioinformatics/btae133"],"eki":["1919626468"]}} 
SRT |a CORDESJONAPYM2AIAPYT2024