Detecting defect dynamics in relativistic field theories far from equilibrium using topological data analysis

We study nonequilibrium dynamics of relativistic N-component scalar field theories in Minkowski space-time in a classical statistical regime, where typical occupation numbers of modes are much larger than unity. In this strongly correlated system far from equilibrium, the role of different phenomena...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Noel, Viktoria (VerfasserIn) , Spitz, Daniel (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 11 March 2024
In: Physical review
Year: 2024, Jahrgang: 109, Heft: 5, Pages: 1-19
ISSN:2470-0029
DOI:10.1103/PhysRevD.109.056011
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1103/PhysRevD.109.056011
Verlag, lizenzpflichtig, Volltext: https://link.aps.org/doi/10.1103/PhysRevD.109.056011
Volltext
Verfasserangaben:Viktoria Noel and Daniel Spitz
Beschreibung
Zusammenfassung:We study nonequilibrium dynamics of relativistic N-component scalar field theories in Minkowski space-time in a classical statistical regime, where typical occupation numbers of modes are much larger than unity. In this strongly correlated system far from equilibrium, the role of different phenomena such as nonlinear wave propagation and defect dynamics remains to be clarified. We employ persistent homology to infer topological features of the nonequilibrium many-body system for different numbers of field components N via a hierarchy of cubical complexes. Specifically, we show that the persistent homology of local energy density fluctuations can give rise to signatures of self-similar scaling associated with topological defects, distinct from the scaling behavior of nonlinear wave modes. This contributes to the systematic understanding of the role of topological defects for far-from-equilibrium time evolutions of nonlinear many-body systems.
Beschreibung:Gesehen am 14.03.2025
Beschreibung:Online Resource
ISSN:2470-0029
DOI:10.1103/PhysRevD.109.056011