Reconstructing and analyzing the invariances of low-dose CT image denoising networks

Background Deep learning-based methods led to significant advancements in many areas of medical imaging, most of which are concerned with the reduction of artifacts caused by motion, scatter, or noise. However, with most neural networks being black boxes, they remain notoriously difficult to interpr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Eulig, Elias (VerfasserIn) , Jäger, Fabian (VerfasserIn) , Maier, Joscha (VerfasserIn) , Ommer, Björn (VerfasserIn) , Kachelrieß, Marc (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: January 2025
In: Medical physics
Year: 2025, Jahrgang: 52, Heft: 1, Pages: 188-200
ISSN:2473-4209
DOI:10.1002/mp.17413
Online-Zugang:Verlag, kostenfrei, Volltext: https://doi.org/10.1002/mp.17413
Verlag, kostenfrei, Volltext: https://onlinelibrary.wiley.com/doi/abs/10.1002/mp.17413
Volltext
Verfasserangaben:Elias Eulig, Fabian Jäger, Joscha Maier, Björn Ommer, Marc Kachelrieß

MARC

LEADER 00000caa a2200000 c 4500
001 1919847294
003 DE-627
005 20250717001326.0
007 cr uuu---uuuuu
008 250314s2025 xx |||||o 00| ||eng c
024 7 |a 10.1002/mp.17413  |2 doi 
035 |a (DE-627)1919847294 
035 |a (DE-599)KXP1919847294 
035 |a (OCoLC)1528043180 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Eulig, Elias  |d 1995-  |e VerfasserIn  |0 (DE-588)1191843181  |0 (DE-627)1670315185  |4 aut 
245 1 0 |a Reconstructing and analyzing the invariances of low-dose CT image denoising networks  |c Elias Eulig, Fabian Jäger, Joscha Maier, Björn Ommer, Marc Kachelrieß 
264 1 |c January 2025 
300 |a 13 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 14.03.2025 
520 |a Background Deep learning-based methods led to significant advancements in many areas of medical imaging, most of which are concerned with the reduction of artifacts caused by motion, scatter, or noise. However, with most neural networks being black boxes, they remain notoriously difficult to interpret, hindering their clinical implementation. In particular, it has been shown that networks exhibit invariances w.r.t. input features, that is, they learn to ignore certain information in the input data. Purpose To improve the interpretability of deep learning-based low-dose CT image denoising networks. Methods We learn a complete data representation of low-dose input images using a conditional variational autoencoder (cVAE). In this representation, invariances of any given denoising network are then disentangled from the information it is not invariant to using a conditional invertible neural network (cINN). At test time, image-space invariances are generated by applying the inverse of the cINN and subsequent decoding using the cVAE. We propose two methods to analyze sampled invariances and to find those that correspond to alterations of anatomical structures. Results The proposed method is applied to four popular deep learning-based low-dose CT image denoising networks. We find that the networks are not only invariant to noise amplitude and realizations, but also to anatomical structures. Conclusions The proposed method is capable of reconstructing and analyzing invariances of deep learning-based low-dose CT image denoising networks. This is an important step toward interpreting deep learning-based methods for medical imaging, which is essential for their clinical implementation. 
650 4 |a computed tomography 
650 4 |a deep learning 
650 4 |a explainability 
650 4 |a invariances 
650 4 |a low-dose 
650 4 |a robustness 
700 1 |a Jäger, Fabian  |d 1996-  |e VerfasserIn  |0 (DE-588)1358990123  |0 (DE-627)1919317783  |4 aut 
700 1 |a Maier, Joscha  |d 1988-  |e VerfasserIn  |0 (DE-588)1185600868  |0 (DE-627)1664987231  |4 aut 
700 1 |a Ommer, Björn  |d 1981-  |e VerfasserIn  |0 (DE-588)1034893106  |0 (DE-627)746457510  |0 (DE-576)382507916  |4 aut 
700 1 |a Kachelrieß, Marc  |d 1969-  |e VerfasserIn  |0 (DE-588)120866544  |0 (DE-627)705049280  |0 (DE-576)292422725  |4 aut 
773 0 8 |i Enthalten in  |t Medical physics  |d Hoboken, NJ : Wiley, 1974  |g 52(2025), 1 vom: Jan., Seite 188-200  |h Online-Ressource  |w (DE-627)265784867  |w (DE-600)1466421-5  |w (DE-576)074891243  |x 2473-4209  |7 nnas  |a Reconstructing and analyzing the invariances of low-dose CT image denoising networks 
773 1 8 |g volume:52  |g year:2025  |g number:1  |g month:01  |g pages:188-200  |g extent:13  |a Reconstructing and analyzing the invariances of low-dose CT image denoising networks 
856 4 0 |u https://doi.org/10.1002/mp.17413  |x Verlag  |x Resolving-System  |z kostenfrei  |3 Volltext 
856 4 0 |u https://onlinelibrary.wiley.com/doi/abs/10.1002/mp.17413  |x Verlag  |z kostenfrei  |3 Volltext 
951 |a AR 
992 |a 20250314 
993 |a Article 
994 |a 2025 
998 |g 120866544  |a Kachelrieß, Marc  |m 120866544:Kachelrieß, Marc  |d 50000  |e 50000PK120866544  |k 0/50000/  |p 5 
998 |g 1358990123  |a Jäger, Fabian  |m 1358990123:Jäger, Fabian  |d 130000  |e 130000PJ1358990123  |k 0/130000/  |p 2 
998 |g 1191843181  |a Eulig, Elias  |m 1191843181:Eulig, Elias  |d 130000  |e 130000PE1191843181  |k 0/130000/  |p 1  |x j 
999 |a KXP-PPN1919847294  |e 4687171605 
BIB |a Y 
SER |a journal 
JSO |a {"origin":[{"dateIssuedKey":"2025","dateIssuedDisp":"January 2025"}],"language":["eng"],"relHost":[{"note":["Gesehen am 01.08.2025"],"physDesc":[{"extent":"Online-Ressource"}],"disp":"Reconstructing and analyzing the invariances of low-dose CT image denoising networksMedical physics","language":["eng"],"origin":[{"publisher":"Wiley ; AAPM ; [Verlag nicht ermittelbar]","dateIssuedDisp":"1974-","publisherPlace":"Hoboken, NJ ; College Park, Md. ; New York, NY","dateIssuedKey":"1974"}],"type":{"bibl":"periodical","media":"Online-Ressource"},"part":{"text":"52(2025), 1 vom: Jan., Seite 188-200","extent":"13","volume":"52","issue":"1","pages":"188-200","year":"2025"},"titleAlt":[{"title":"Medical physics online"}],"title":[{"title":"Medical physics","title_sort":"Medical physics"}],"id":{"zdb":["1466421-5"],"eki":["265784867"],"issn":["2473-4209","1522-8541"]},"recId":"265784867","pubHistory":["1.1974 -"],"name":{"displayForm":["American Association of Physicists in Medicine ; American Institute of Physics"]}}],"physDesc":[{"extent":"13 S."}],"note":["Gesehen am 14.03.2025"],"name":{"displayForm":["Elias Eulig, Fabian Jäger, Joscha Maier, Björn Ommer, Marc Kachelrieß"]},"id":{"eki":["1919847294"],"doi":["10.1002/mp.17413"]},"recId":"1919847294","title":[{"title":"Reconstructing and analyzing the invariances of low-dose CT image denoising networks","title_sort":"Reconstructing and analyzing the invariances of low-dose CT image denoising networks"}],"type":{"bibl":"article-journal","media":"Online-Ressource"},"person":[{"role":"aut","family":"Eulig","given":"Elias","roleDisplay":"VerfasserIn","display":"Eulig, Elias"},{"family":"Jäger","roleDisplay":"VerfasserIn","given":"Fabian","display":"Jäger, Fabian","role":"aut"},{"family":"Maier","display":"Maier, Joscha","roleDisplay":"VerfasserIn","given":"Joscha","role":"aut"},{"roleDisplay":"VerfasserIn","given":"Björn","display":"Ommer, Björn","family":"Ommer","role":"aut"},{"role":"aut","display":"Kachelrieß, Marc","roleDisplay":"VerfasserIn","given":"Marc","family":"Kachelrieß"}]} 
SRT |a EULIGELIASRECONSTRUC2025