Explainable machine learning for predicting 30-day readmission in acute heart failure patients

We aimed to develop a machine-learning based predictive model to identify 30-day readmission risk in Acute heart failure (AHF) patients. In this study 2232 patients hospitalized with AHF were included. The variance inflation factor value and 5-fold cross-validation were used to select vital clinical...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Zhang, Yang (VerfasserIn) , Xiang, Tianyu (VerfasserIn) , Wang, Yanqing (VerfasserIn) , Shu, Tingting (VerfasserIn) , Yin, Chengliang (VerfasserIn) , Li, Huan (VerfasserIn) , Duan, Minjie (VerfasserIn) , Sun, Mengyan (VerfasserIn) , Zhao, Binyi (VerfasserIn) , Kadier, Kaisaierjiang (VerfasserIn) , Xu, Qian (VerfasserIn) , Ling, Tao (VerfasserIn) , Kong, Fanqi (VerfasserIn) , Liu, Xiaozhu (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 19 July 2024
In: iScience
Year: 2024, Jahrgang: 27, Heft: 7, Pages: 1-12
ISSN:2589-0042
DOI:10.1016/j.isci.2024.110281
Online-Zugang:Verlag, kostenfrei, Volltext: https://doi.org/10.1016/j.isci.2024.110281
Verlag, kostenfrei, Volltext: https://www.sciencedirect.com/science/article/pii/S2589004224015062
Volltext
Verfasserangaben:Yang Zhang, Tianyu Xiang, Yanqing Wang, Tingting Shu, Chengliang Yin, Huan Li, Minjie Duan, Mengyan Sun, Binyi Zhao, Kaisaierjiang Kadier, Qian Xu, Tao Ling, Fanqi Kong, Xiaozhu Liu

MARC

LEADER 00000caa a2200000 c 4500
001 1919918000
003 DE-627
005 20250717001532.0
007 cr uuu---uuuuu
008 250317s2024 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.isci.2024.110281  |2 doi 
035 |a (DE-627)1919918000 
035 |a (DE-599)KXP1919918000 
035 |a (OCoLC)1528019996 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Zhang, Yang  |d 1994-  |e VerfasserIn  |0 (DE-588)1356589081  |0 (DE-627)1917403933  |4 aut 
245 1 0 |a Explainable machine learning for predicting 30-day readmission in acute heart failure patients  |c Yang Zhang, Tianyu Xiang, Yanqing Wang, Tingting Shu, Chengliang Yin, Huan Li, Minjie Duan, Mengyan Sun, Binyi Zhao, Kaisaierjiang Kadier, Qian Xu, Tao Ling, Fanqi Kong, Xiaozhu Liu 
264 1 |c 19 July 2024 
300 |b Illustrationen 
300 |a 12 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Online verfügbar: 15. Juni 2024, Artikelversion: 27. Juni 2024 
500 |a Gesehen am 17.03.2025 
520 |a We aimed to develop a machine-learning based predictive model to identify 30-day readmission risk in Acute heart failure (AHF) patients. In this study 2232 patients hospitalized with AHF were included. The variance inflation factor value and 5-fold cross-validation were used to select vital clinical variables. Five machine learning algorithms with good performance were applied to develop models, and the discrimination ability was comprehensively evaluated by sensitivity, specificity, and area under the ROC curve (AUC). Prediction results were illustrated by SHapley Additive exPlanations (SHAP) values. Finally, the XGBoost model performs optimally: the greatest AUC of 0.763 (0.703-0.824), highest sensitivity of 0.660, and high accuracy of 0.709. This study developed an optimal XGBoost model to predict the risk of 30-day unplanned readmission for AHF patients, which showed more significant performance compared with traditional logistic regression (LR) model. 
650 4 |a bioinformatics 
650 4 |a cardiovascular medicine 
700 1 |a Xiang, Tianyu  |e VerfasserIn  |4 aut 
700 1 |a Wang, Yanqing  |e VerfasserIn  |4 aut 
700 1 |a Shu, Tingting  |e VerfasserIn  |4 aut 
700 1 |a Yin, Chengliang  |e VerfasserIn  |4 aut 
700 1 |a Li, Huan  |e VerfasserIn  |4 aut 
700 1 |a Duan, Minjie  |e VerfasserIn  |4 aut 
700 1 |a Sun, Mengyan  |e VerfasserIn  |4 aut 
700 1 |a Zhao, Binyi  |d 1995-  |e VerfasserIn  |0 (DE-588)1360238794  |0 (DE-627)1919917829  |4 aut 
700 1 |a Kadier, Kaisaierjiang  |e VerfasserIn  |4 aut 
700 1 |a Xu, Qian  |e VerfasserIn  |4 aut 
700 1 |a Ling, Tao  |e VerfasserIn  |4 aut 
700 1 |a Kong, Fanqi  |e VerfasserIn  |4 aut 
700 1 |a Liu, Xiaozhu  |e VerfasserIn  |4 aut 
773 0 8 |i Enthalten in  |t iScience  |d Amsterdam : Elsevier, 2018  |g 27(2024), 7, Artikel-ID 110281, Seite 1-12  |h Online-Ressource  |w (DE-627)1019532106  |w (DE-600)2927064-9  |w (DE-576)502115858  |x 2589-0042  |7 nnas  |a Explainable machine learning for predicting 30-day readmission in acute heart failure patients 
773 1 8 |g volume:27  |g year:2024  |g number:7  |g elocationid:110281  |g pages:1-12  |g extent:12  |a Explainable machine learning for predicting 30-day readmission in acute heart failure patients 
856 4 0 |u https://doi.org/10.1016/j.isci.2024.110281  |x Verlag  |x Resolving-System  |z kostenfrei  |3 Volltext 
856 4 0 |u https://www.sciencedirect.com/science/article/pii/S2589004224015062  |x Verlag  |z kostenfrei  |3 Volltext 
951 |a AR 
992 |a 20250317 
993 |a Article 
994 |a 2024 
998 |g 1360238794  |a Zhao, Binyi  |m 1360238794:Zhao, Binyi  |d 60000  |e 60000PZ1360238794  |k 0/60000/  |p 9 
999 |a KXP-PPN1919918000  |e 4687778046 
BIB |a Y 
SER |a journal 
JSO |a {"title":[{"title_sort":"Explainable machine learning for predicting 30-day readmission in acute heart failure patients","title":"Explainable machine learning for predicting 30-day readmission in acute heart failure patients"}],"person":[{"family":"Zhang","given":"Yang","display":"Zhang, Yang","role":"aut"},{"display":"Xiang, Tianyu","family":"Xiang","given":"Tianyu","role":"aut"},{"display":"Wang, Yanqing","family":"Wang","given":"Yanqing","role":"aut"},{"given":"Tingting","family":"Shu","display":"Shu, Tingting","role":"aut"},{"role":"aut","family":"Yin","given":"Chengliang","display":"Yin, Chengliang"},{"role":"aut","given":"Huan","family":"Li","display":"Li, Huan"},{"role":"aut","given":"Minjie","family":"Duan","display":"Duan, Minjie"},{"role":"aut","display":"Sun, Mengyan","given":"Mengyan","family":"Sun"},{"role":"aut","family":"Zhao","given":"Binyi","display":"Zhao, Binyi"},{"family":"Kadier","given":"Kaisaierjiang","display":"Kadier, Kaisaierjiang","role":"aut"},{"family":"Xu","given":"Qian","display":"Xu, Qian","role":"aut"},{"role":"aut","display":"Ling, Tao","family":"Ling","given":"Tao"},{"role":"aut","display":"Kong, Fanqi","given":"Fanqi","family":"Kong"},{"role":"aut","given":"Xiaozhu","family":"Liu","display":"Liu, Xiaozhu"}],"origin":[{"dateIssuedKey":"2024","dateIssuedDisp":"19 July 2024"}],"type":{"media":"Online-Ressource","bibl":"article-journal"},"note":["Online verfügbar: 15. Juni 2024, Artikelversion: 27. Juni 2024","Gesehen am 17.03.2025"],"id":{"doi":["10.1016/j.isci.2024.110281"],"eki":["1919918000"]},"recId":"1919918000","relHost":[{"note":["Gesehen am 11.09.2018"],"origin":[{"publisher":"Elsevier","dateIssuedDisp":"[2018]-","publisherPlace":"Amsterdam ; Boston ; London ; New York ; Oxford ; Paris ; Philadelphia ; San Diego ; St. Louis"}],"type":{"bibl":"periodical","media":"Online-Ressource"},"title":[{"title_sort":"iScience","title":"iScience"}],"pubHistory":["Volume 1 (March 23, 2018)-"],"language":["eng"],"physDesc":[{"extent":"Online-Ressource"}],"disp":"Explainable machine learning for predicting 30-day readmission in acute heart failure patientsiScience","part":{"pages":"1-12","volume":"27","extent":"12","issue":"7","year":"2024","text":"27(2024), 7, Artikel-ID 110281, Seite 1-12"},"recId":"1019532106","id":{"zdb":["2927064-9"],"issn":["2589-0042"],"eki":["1019532106"]}}],"name":{"displayForm":["Yang Zhang, Tianyu Xiang, Yanqing Wang, Tingting Shu, Chengliang Yin, Huan Li, Minjie Duan, Mengyan Sun, Binyi Zhao, Kaisaierjiang Kadier, Qian Xu, Tao Ling, Fanqi Kong, Xiaozhu Liu"]},"physDesc":[{"extent":"12 S.","noteIll":"Illustrationen"}],"language":["eng"]} 
SRT |a ZHANGYANGXEXPLAINABL1920