Evaluating the prognostic and clinical validity of the Fall Risk Score derived from an AI-based mHealth app for fall prevention: retrospective Real-World Data Analysis

Background: Falls pose a significant public health concern associated with high mortality rates, increasing occurrence due to the aging population and prevalence of risks such as multimorbidity and frailty. Falls not only lead to physical injuries but also have detrimental psychological and social c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Alves, Sónia A. (VerfasserIn) , Temme, Steffen (VerfasserIn) , Motamedi, Seyedamirhosein (VerfasserIn) , Kura, Marie (VerfasserIn) , Weber, Sebastian (VerfasserIn) , Zeichen, Johannes (VerfasserIn) , Pommer, Wolfgang (VerfasserIn) , Baumgart, André (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 04.12.2024
In: JMIR aging
Year: 2024, Jahrgang: 7, Heft: 1, Pages: 1-14
ISSN:2561-7605
DOI:10.2196/55681
Online-Zugang:Verlag, kostenfrei, Volltext: https://doi.org/10.2196/55681
Verlag, kostenfrei, Volltext: https://aging.jmir.org/2024/1/e55681
Volltext
Verfasserangaben:Sónia A Alves, PhD, Steffen Temme, BSc, Seyedamirhosein Motamedi, PhD, Marie Kura, MSc, Sebastian Weber, MD, Johannes Zeichen, Prof Dr, Wolfgang Pommer, MD, André Baumgart, PhD

MARC

LEADER 00000caa a2200000 c 4500
001 1919960309
003 DE-627
005 20250717001709.0
007 cr uuu---uuuuu
008 250318s2024 xx |||||o 00| ||eng c
024 7 |a 10.2196/55681  |2 doi 
035 |a (DE-627)1919960309 
035 |a (DE-599)KXP1919960309 
035 |a (OCoLC)1528043201 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Alves, Sónia A.  |e VerfasserIn  |0 (DE-588)1360307834  |0 (DE-627)1919960783  |4 aut 
245 1 0 |a Evaluating the prognostic and clinical validity of the Fall Risk Score derived from an AI-based mHealth app for fall prevention  |b retrospective Real-World Data Analysis  |c Sónia A Alves, PhD, Steffen Temme, BSc, Seyedamirhosein Motamedi, PhD, Marie Kura, MSc, Sebastian Weber, MD, Johannes Zeichen, Prof Dr, Wolfgang Pommer, MD, André Baumgart, PhD 
264 1 |c 04.12.2024 
300 |a 14 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 18.03.2025 
520 |a Background: Falls pose a significant public health concern associated with high mortality rates, increasing occurrence due to the aging population and prevalence of risks such as multimorbidity and frailty. Falls not only lead to physical injuries but also have detrimental psychological and social consequences negatively impacting quality of life. Identifying individuals at high risk for falls is crucial, particularly for those aged 60 years or over and living in residential care settings, and current professional guidelines favor personalized, multifactorial fall risk assessment approaches for effective fall prevention. Objective: The present study aimed to explore the prognostic validity of the Fall Risk Score (FRS), a multifactorial-based metric to assess fall risk, using longitudinal real-world data and establish the clinical relevance of the FRS by identifying threshold values and the minimum clinically important differences (MCID). Methods: This retrospective cohort study involved 617 older adults (857 observations, 615 women, 242 men, 83.3 ± 8.7 years old, 0.49 ± 0.19 m/s, 622 using walking aids) residing in German residential care facilities and employed the LINDERA mHealth application for fall risk assessment. The study focused on the association between FRS at the initial assessment (T1) and the normalized number of falls at follow-up (T2). A quadratic regression model and Spearman’s correlation analysis was utilized to analyze the data, supported by descriptive statistics, and subgroup analyses. Results: The quadratic model exhibited the lowest RMSE (0.015), and Spearman’s correlation analysis revealed that a higher FRS at T1 is linked to an increased number of falls at T2 (Spearman’s correlation coefficient=0.960, P<.001). Sub-groups revealed significant strong correlations between FRS at T1 and falls at T2, particularly for older adults with slower gait speeds (Spearman’s correlation coefficient=0.954, P<.001), and those using walking aids (Spearman’s correlation coefficient=0.955, P<.001). Threshold values revealed that an FRS of 45%, 32%, and 24% corresponded to the expectation of a fall within 6, 12, and 24 months, respectively. Distribution-based MCID values were established, providing ranges for small, medium, and large effect sizes for FRS changes. Conclusions: The FRS exhibits good prognostic validity for predicting future falls, particularly in specific subgroups. The findings support a stratified fall risk assessment approach and emphasize the significance of early and personalized intervention. This study contributes to the knowledge base on fall risk, despite limitations such as demographic focus and potential assessment interval variability. Clinical Trial: Not applicable, due to anonymized data processing and analysis. 
700 1 |a Temme, Steffen  |e VerfasserIn  |4 aut 
700 1 |a Motamedi, Seyedamirhosein  |e VerfasserIn  |4 aut 
700 1 |a Kura, Marie  |e VerfasserIn  |4 aut 
700 1 |a Weber, Sebastian  |e VerfasserIn  |4 aut 
700 1 |a Zeichen, Johannes  |e VerfasserIn  |4 aut 
700 1 |a Pommer, Wolfgang  |e VerfasserIn  |4 aut 
700 1 |a Baumgart, André  |d 1974-  |e VerfasserIn  |0 (DE-588)1012533514  |0 (DE-627)66183316X  |0 (DE-576)345550773  |4 aut 
773 0 8 |i Enthalten in  |t JMIR aging  |d Toronto, ON : JMIR Publications Inc., 2018  |g 7(2024), 1, Artikel-ID e55681, Seite 1-14  |h Online-Ressource  |w (DE-627)1678143278  |w (DE-600)2985919-0  |x 2561-7605  |7 nnas  |a Evaluating the prognostic and clinical validity of the Fall Risk Score derived from an AI-based mHealth app for fall prevention retrospective Real-World Data Analysis 
773 1 8 |g volume:7  |g year:2024  |g number:1  |g elocationid:e55681  |g pages:1-14  |g extent:14  |a Evaluating the prognostic and clinical validity of the Fall Risk Score derived from an AI-based mHealth app for fall prevention retrospective Real-World Data Analysis 
856 4 0 |u https://doi.org/10.2196/55681  |x Verlag  |x Resolving-System  |z kostenfrei  |3 Volltext 
856 4 0 |u https://aging.jmir.org/2024/1/e55681  |x Verlag  |z kostenfrei  |3 Volltext 
951 |a AR 
992 |a 20250318 
993 |a Article 
994 |a 2024 
998 |g 1012533514  |a Baumgart, André  |m 1012533514:Baumgart, André  |d 60000  |d 65300  |e 60000PB1012533514  |e 65300PB1012533514  |k 0/60000/  |k 1/60000/65300/  |p 8  |y j 
999 |a KXP-PPN1919960309  |e 468785754X 
BIB |a Y 
SER |a journal 
JSO |a {"physDesc":[{"extent":"14 S."}],"relHost":[{"physDesc":[{"extent":"Online-Ressource"}],"id":{"issn":["2561-7605"],"zdb":["2985919-0"],"eki":["1678143278"]},"origin":[{"dateIssuedDisp":"[2018]-","publisher":"JMIR Publications Inc.","publisherPlace":"Toronto, ON"}],"titleAlt":[{"title":"Journal of medical internet research"}],"part":{"extent":"14","text":"7(2024), 1, Artikel-ID e55681, Seite 1-14","volume":"7","pages":"1-14","issue":"1","year":"2024"},"pubHistory":["Vol 1, no 1 (Jan/Jun 2018)-"],"recId":"1678143278","language":["eng"],"disp":"Evaluating the prognostic and clinical validity of the Fall Risk Score derived from an AI-based mHealth app for fall prevention retrospective Real-World Data AnalysisJMIR aging","type":{"media":"Online-Ressource","bibl":"periodical"},"title":[{"title_sort":"JMIR aging","title":"JMIR aging"}]}],"origin":[{"dateIssuedDisp":"04.12.2024","dateIssuedKey":"2024"}],"id":{"eki":["1919960309"],"doi":["10.2196/55681"]},"name":{"displayForm":["Sónia A Alves, PhD, Steffen Temme, BSc, Seyedamirhosein Motamedi, PhD, Marie Kura, MSc, Sebastian Weber, MD, Johannes Zeichen, Prof Dr, Wolfgang Pommer, MD, André Baumgart, PhD"]},"note":["Gesehen am 18.03.2025"],"type":{"bibl":"article-journal","media":"Online-Ressource"},"recId":"1919960309","language":["eng"],"title":[{"title":"Evaluating the prognostic and clinical validity of the Fall Risk Score derived from an AI-based mHealth app for fall prevention","subtitle":"retrospective Real-World Data Analysis","title_sort":"Evaluating the prognostic and clinical validity of the Fall Risk Score derived from an AI-based mHealth app for fall prevention"}],"person":[{"display":"Alves, Sónia A.","roleDisplay":"VerfasserIn","role":"aut","family":"Alves","given":"Sónia A."},{"role":"aut","roleDisplay":"VerfasserIn","display":"Temme, Steffen","given":"Steffen","family":"Temme"},{"family":"Motamedi","given":"Seyedamirhosein","roleDisplay":"VerfasserIn","display":"Motamedi, Seyedamirhosein","role":"aut"},{"display":"Kura, Marie","roleDisplay":"VerfasserIn","role":"aut","family":"Kura","given":"Marie"},{"family":"Weber","given":"Sebastian","display":"Weber, Sebastian","roleDisplay":"VerfasserIn","role":"aut"},{"roleDisplay":"VerfasserIn","display":"Zeichen, Johannes","role":"aut","family":"Zeichen","given":"Johannes"},{"roleDisplay":"VerfasserIn","display":"Pommer, Wolfgang","role":"aut","family":"Pommer","given":"Wolfgang"},{"family":"Baumgart","given":"André","roleDisplay":"VerfasserIn","display":"Baumgart, André","role":"aut"}]} 
SRT |a ALVESSONIAEVALUATING0412