Weyl chamber length compactification of the PSL(2,R) x PSL(2,R) maximal character variety

We study the vectorial length compactification of the space of conjugacy classes of maximal representations of the fundamental group ΓΓ\Gamma of a closed hyperbolic surface ΣΣ\Sigma in PSL(2,R)nPSL(2,R)n\textrm{PSL}(2,{\mathbb{R}})^n. We identify the boundary with the sphere P((ML)n)P((ML)n){\mathbb...

Full description

Saved in:
Bibliographic Details
Main Authors: Burger, Marc (Author) , Iozzi, Alessandra (Author) , Parreau, Anne (Author) , Pozzetti, Maria Beatrice (Author)
Format: Article (Journal)
Language:English
Published: 2025
In: The Glasgow mathematical journal
Year: 2025, Volume: 67, Issue: 1, Pages: 11-33
ISSN:1469-509X
DOI:10.1017/S0017089524000156
Online Access:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1017/S0017089524000156
Verlag, lizenzpflichtig, Volltext: https://www.cambridge.org/core/journals/glasgow-mathematical-journal/article/weyl-chamber-length-compactification-of-the-textrmpsl2mathbbrtimes-textrmpsl2mathbbr-maximal-character-variety/3FD3EBF841C861C9CA4E617440DA1EB3#
Get full text
Author Notes:Marc Burger, Alessandra Iozzi, Anne Parreau and Maria Beatrice Pozzetti
Description
Summary:We study the vectorial length compactification of the space of conjugacy classes of maximal representations of the fundamental group ΓΓ\Gamma of a closed hyperbolic surface ΣΣ\Sigma in PSL(2,R)nPSL(2,R)n\textrm{PSL}(2,{\mathbb{R}})^n. We identify the boundary with the sphere P((ML)n)P((ML)n){\mathbb{P}}(({\mathcal{ML}})^n), where MLML\mathcal{ML} is the space of measured geodesic laminations on ΣΣ\Sigma. In the case n=2n=2n=2, we give a geometric interpretation of the boundary as the space of homothety classes of R2R2{\mathbb{R}}^2-mixed structures on ΣΣ\Sigma. We associate to such a structure a dual tree-graded space endowed with an R2+R2+{\mathbb{R}}_+^2-valued metric, which we show to be universal with respect to actions on products of two RR\mathbb{R}-trees with the given length spectrum.
Item Description:Online veröffentlicht: 27. September 2024
Gesehen am 26.03.2025
Physical Description:Online Resource
ISSN:1469-509X
DOI:10.1017/S0017089524000156