On the dose rate dependence of radiofluorescence signals of natural quartz

The general behaviour of the main UV emission during radiofluorescence (RF) in natural quartz with dose rates ranging from 10 to 500 mGy s−1 is analysed. RF emission spectra were recorded and deconvolved to extract information on the C band, which is often the main emission of quartz annealed at a t...

Full description

Saved in:
Bibliographic Details
Main Authors: Friedrich, Johannes (Author) , Fasoli, Mauro (Author) , Kreutzer, Sebastian (Author) , Schmidt, Christoph (Author)
Format: Article (Journal)
Language:English
Published: April 2018
In: Radiation measurements
Year: 2018, Volume: 111, Pages: 19-26
ISSN:1879-0925
DOI:10.1016/j.radmeas.2018.02.006
Online Access:Resolving-System, lizenzpflichtig, Volltext: https://doi.org/10.1016/j.radmeas.2018.02.006
Verlag, lizenzpflichtig, Volltext: https://www.sciencedirect.com/science/article/pii/S1350448717307680?via%3Dihub
Get full text
Author Notes:Johannes Friedrich, Mauro Fasoli, Sebastian Kreutzer, Christoph Schmidt
Description
Summary:The general behaviour of the main UV emission during radiofluorescence (RF) in natural quartz with dose rates ranging from 10 to 500 mGy s−1 is analysed. RF emission spectra were recorded and deconvolved to extract information on the C band, which is often the main emission of quartz annealed at a temperature close to 500 °C. Our results confirmed theoretical findings, e.g., the direct proportionality of the initial RF signal of the C band with dose rate and the direct proportionality of the initial slope with the squared dose rate. Furthermore, numerical simulations employing a three-energy-level model and experimental data are in agreement. A first concept of using quartz UV-RF for dosimetric application is given based on the findings that different absorbed doses resulting from different dose rates match well into a single UV-RF decay curve.
Item Description:Online verfügbar: 1. März 2018, Artikelversion: 22. März 2018
Gesehen am 27.03.2025
Physical Description:Online Resource
ISSN:1879-0925
DOI:10.1016/j.radmeas.2018.02.006