A physics-informed deep learning framework for dynamic susceptibility contrast perfusion MRI

Background Perfusion magnetic resonance imaging (MRI)s plays a central role in the diagnosis and monitoring of neurovascular or neurooncological disease. However, conventional processing techniques are limited in their ability to capture relevant characteristics of the perfusion dynamics and suffer...

Full description

Saved in:
Bibliographic Details
Main Authors: Rotkopf, Lukas Thomas (Author) , Ziener, Christian H. (Author) , von Knebel-Doeberitz, Nikolaus (Author) , Wolf, Sabine D. (Author) , Hohmann, Anja (Author) , Wick, Wolfgang (Author) , Bendszus, Martin (Author) , Schlemmer, Heinz-Peter (Author) , Paech, Daniel (Author) , Kurz, Felix T. (Author)
Format: Article (Journal)
Language:English
Published: [20 September 2024]
In: Medical physics
Year: 2024, Volume: 51, Issue: 12, Pages: 9031-9040
ISSN:2473-4209
DOI:10.1002/mp.17415
Online Access:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1002/mp.17415
Verlag, lizenzpflichtig, Volltext: https://onlinelibrary.wiley.com/doi/abs/10.1002/mp.17415
Get full text
Author Notes:Lukas T. Rotkopf, Christian H. Ziener, Nikolaus von Knebel-Doeberitz, Sabine D. Wolf, Anja Hohmann, Wolfgang Wick, Martin Bendszus, Heinz-Peter Schlemmer, Daniel Paech, Felix T. Kurz

MARC

LEADER 00000caa a2200000 c 4500
001 1920734694
003 DE-627
005 20250717003424.0
007 cr uuu---uuuuu
008 250327s2024 xx |||||o 00| ||eng c
024 7 |a 10.1002/mp.17415  |2 doi 
035 |a (DE-627)1920734694 
035 |a (DE-599)KXP1920734694 
035 |a (OCoLC)1528043799 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Rotkopf, Lukas Thomas  |d 1992-  |e VerfasserIn  |0 (DE-588)1246822814  |0 (DE-627)1779915187  |4 aut 
245 1 2 |a A physics-informed deep learning framework for dynamic susceptibility contrast perfusion MRI  |c Lukas T. Rotkopf, Christian H. Ziener, Nikolaus von Knebel-Doeberitz, Sabine D. Wolf, Anja Hohmann, Wolfgang Wick, Martin Bendszus, Heinz-Peter Schlemmer, Daniel Paech, Felix T. Kurz 
264 1 |c [20 September 2024] 
300 |a 10 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 27.03.2025 
520 |a Background Perfusion magnetic resonance imaging (MRI)s plays a central role in the diagnosis and monitoring of neurovascular or neurooncological disease. However, conventional processing techniques are limited in their ability to capture relevant characteristics of the perfusion dynamics and suffer from a lack of standardization. Purpose We propose a physics-informed deep learning framework which is capable of analyzing dynamic susceptibility contrast perfusion MRI data and recovering the dynamic tissue response with high accuracy. Methods The framework uses physics-informed neural networks (PINNs) to learn the voxel-wise TRF, which represents the dynamic response of the local vascular network to the contrast agent bolus. The network output is stabilized by total variation and elastic net regularization. Parameter maps of normalized cerebral blood flow (nCBF) and volume (nCBV) are then calculated from the predicted residue functions. The results are validated using extensive comparisons to values derived by conventional Tikhonov-regularized singular value decomposition (TiSVD), in silico simulations and an in vivo dataset of perfusion MRI exams of patients with high-grade gliomas. Results The simulation results demonstrate that PINN-derived residue functions show a high concordance with the true functions and that the calculated values of nCBF and nCBV converge towards the true values for higher contrast-to-noise ratios. In the in vivo dataset, we find high correlations between conventionally derived and PINN-predicted perfusion parameters (Pearson's rho for nCBF: 0.84±0.03\0.84 \pm 0.03\ and nCBV: 0.92±0.03\0.92 \pm 0.03\) and very high indices of image similarity (structural similarity index for nCBF: 0.91±0.03\0.91 \pm 0.03\ and for nCBV: 0.98±0.00\0.98 \pm 0.00\). Conclusions PINNs can be used to analyze perfusion MRI data and stably recover the response functions of the local vasculature with high accuracy. 
650 4 |a deep learning 
650 4 |a MRI 
650 4 |a perfusion imaging 
650 4 |a physics-informed neural networks 
700 1 |a Ziener, Christian H.  |d 1978-  |e VerfasserIn  |0 (DE-588)137982755  |0 (DE-627)59885309X  |0 (DE-576)306117355  |4 aut 
700 1 |a von Knebel-Doeberitz, Nikolaus  |e VerfasserIn  |4 aut 
700 1 |a Wolf, Sabine D.  |e VerfasserIn  |4 aut 
700 1 |a Hohmann, Anja  |e VerfasserIn  |0 (DE-588)1053354916  |0 (DE-627)789845822  |0 (DE-576)409105252  |4 aut 
700 1 |a Wick, Wolfgang  |d 1970-  |e VerfasserIn  |0 (DE-588)120297736  |0 (DE-627)080586929  |0 (DE-576)186221320  |4 aut 
700 1 |a Bendszus, Martin  |e VerfasserIn  |0 (DE-588)1032676426  |0 (DE-627)738634131  |0 (DE-576)175567697  |4 aut 
700 1 |a Schlemmer, Heinz-Peter  |e VerfasserIn  |4 aut 
700 1 |a Paech, Daniel  |d 1986-  |e VerfasserIn  |0 (DE-588)1080278214  |0 (DE-627)844124893  |0 (DE-576)453464742  |4 aut 
700 1 |a Kurz, Felix T.  |d 1981-  |e VerfasserIn  |0 (DE-588)1043285474  |0 (DE-627)771321066  |0 (DE-576)394610342  |4 aut 
773 0 8 |i Enthalten in  |t Medical physics  |d Hoboken, NJ : Wiley, 1974  |g 51(2024), 12, Seite 9031-9040  |h Online-Ressource  |w (DE-627)265784867  |w (DE-600)1466421-5  |w (DE-576)074891243  |x 2473-4209  |7 nnas  |a A physics-informed deep learning framework for dynamic susceptibility contrast perfusion MRI 
773 1 8 |g volume:51  |g year:2024  |g number:12  |g pages:9031-9040  |g extent:10  |a A physics-informed deep learning framework for dynamic susceptibility contrast perfusion MRI 
856 4 0 |u https://doi.org/10.1002/mp.17415  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u https://onlinelibrary.wiley.com/doi/abs/10.1002/mp.17415  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20250327 
993 |a Article 
994 |a 2024 
998 |g 1043285474  |a Kurz, Felix T.  |m 1043285474:Kurz, Felix T.  |d 50000  |e 50000PK1043285474  |k 0/50000/  |p 10  |y j 
998 |g 1080278214  |a Paech, Daniel  |m 1080278214:Paech, Daniel  |d 50000  |e 50000PP1080278214  |k 0/50000/  |p 9 
998 |g 1032676426  |a Bendszus, Martin  |m 1032676426:Bendszus, Martin  |d 910000  |d 911100  |e 910000PB1032676426  |e 911100PB1032676426  |k 0/910000/  |k 1/910000/911100/  |p 7 
998 |g 120297736  |a Wick, Wolfgang  |m 120297736:Wick, Wolfgang  |d 910000  |d 911100  |e 910000PW120297736  |e 911100PW120297736  |k 0/910000/  |k 1/910000/911100/  |p 6 
998 |g 1053354916  |a Hohmann, Anja  |m 1053354916:Hohmann, Anja  |d 910000  |d 911100  |e 910000PH1053354916  |e 911100PH1053354916  |k 0/910000/  |k 1/910000/911100/  |p 5 
998 |g 137982755  |a Ziener, Christian H.  |m 137982755:Ziener, Christian H.  |d 50000  |e 50000PZ137982755  |k 0/50000/  |p 2 
999 |a KXP-PPN1920734694  |e 4694718517 
BIB |a Y 
SER |a journal 
JSO |a {"origin":[{"dateIssuedKey":"2024","dateIssuedDisp":"[20 September 2024]"}],"relHost":[{"disp":"A physics-informed deep learning framework for dynamic susceptibility contrast perfusion MRIMedical physics","physDesc":[{"extent":"Online-Ressource"}],"recId":"265784867","language":["eng"],"type":{"bibl":"periodical","media":"Online-Ressource"},"note":["Gesehen am 01.08.2025"],"title":[{"title":"Medical physics","title_sort":"Medical physics"}],"origin":[{"publisher":"Wiley ; AAPM ; [Verlag nicht ermittelbar]","dateIssuedDisp":"1974-","dateIssuedKey":"1974","publisherPlace":"Hoboken, NJ ; College Park, Md. ; New York, NY"}],"id":{"zdb":["1466421-5"],"eki":["265784867"],"issn":["2473-4209","1522-8541"]},"part":{"extent":"10","text":"51(2024), 12, Seite 9031-9040","issue":"12","pages":"9031-9040","volume":"51","year":"2024"},"name":{"displayForm":["American Association of Physicists in Medicine ; American Institute of Physics"]},"titleAlt":[{"title":"Medical physics online"}],"pubHistory":["1.1974 -"]}],"person":[{"family":"Rotkopf","role":"aut","given":"Lukas Thomas","display":"Rotkopf, Lukas Thomas"},{"display":"Ziener, Christian H.","role":"aut","given":"Christian H.","family":"Ziener"},{"display":"von Knebel-Doeberitz, Nikolaus","role":"aut","given":"Nikolaus","family":"von Knebel-Doeberitz"},{"display":"Wolf, Sabine D.","given":"Sabine D.","role":"aut","family":"Wolf"},{"display":"Hohmann, Anja","family":"Hohmann","given":"Anja","role":"aut"},{"family":"Wick","role":"aut","given":"Wolfgang","display":"Wick, Wolfgang"},{"family":"Bendszus","given":"Martin","role":"aut","display":"Bendszus, Martin"},{"display":"Schlemmer, Heinz-Peter","family":"Schlemmer","given":"Heinz-Peter","role":"aut"},{"display":"Paech, Daniel","family":"Paech","given":"Daniel","role":"aut"},{"given":"Felix T.","role":"aut","family":"Kurz","display":"Kurz, Felix T."}],"type":{"bibl":"article-journal","media":"Online-Ressource"},"language":["eng"],"note":["Gesehen am 27.03.2025"],"title":[{"title_sort":"physics-informed deep learning framework for dynamic susceptibility contrast perfusion MRI","title":"A physics-informed deep learning framework for dynamic susceptibility contrast perfusion MRI"}],"physDesc":[{"extent":"10 S."}],"recId":"1920734694","name":{"displayForm":["Lukas T. Rotkopf, Christian H. Ziener, Nikolaus von Knebel-Doeberitz, Sabine D. Wolf, Anja Hohmann, Wolfgang Wick, Martin Bendszus, Heinz-Peter Schlemmer, Daniel Paech, Felix T. Kurz"]},"id":{"doi":["10.1002/mp.17415"],"eki":["1920734694"]}} 
SRT |a ROTKOPFLUKPHYSICSINF2020