Seymour's second neighbourhood conjecture: random graphs and reductions
A longstanding conjecture of Seymour states that in every oriented graph there is a vertex whose second outneighbourhood is at least as large as its outneighbourhood. In this short note we show that, for any fixed p∈[0,1/2)\ pın łeft[0,1/2\right) \, a.a.s. every orientation of G(n,p)\ Głeft(n,p\righ...
Saved in:
| Main Authors: | , , , |
|---|---|
| Format: | Article (Journal) |
| Language: | English |
| Published: |
January 2025
|
| In: |
Random structures & algorithms
Year: 2025, Volume: 66, Issue: 1, Pages: 1-12 |
| ISSN: | 1098-2418 |
| DOI: | 10.1002/rsa.21251 |
| Online Access: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1002/rsa.21251 Verlag, lizenzpflichtig, Volltext: https://onlinelibrary.wiley.com/doi/abs/10.1002/rsa.21251 |
| Author Notes: | Alberto Espuny Díaz, António Girão, Bertille Granet, Gal Kronenberg |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1920856897 | ||
| 003 | DE-627 | ||
| 005 | 20250717003637.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 250331s2025 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.1002/rsa.21251 |2 doi | |
| 035 | |a (DE-627)1920856897 | ||
| 035 | |a (DE-599)KXP1920856897 | ||
| 035 | |a (OCoLC)1528043768 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 28 |2 sdnb | ||
| 100 | 1 | |a Espuny Díaz, Alberto |e VerfasserIn |0 (DE-588)1229848681 |0 (DE-627)1752024702 |4 aut | |
| 245 | 1 | 0 | |a Seymour's second neighbourhood conjecture |b random graphs and reductions |c Alberto Espuny Díaz, António Girão, Bertille Granet, Gal Kronenberg |
| 264 | 1 | |c January 2025 | |
| 300 | |a 12 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Erstveröffentlichung: 7. August 2024 | ||
| 500 | |a Gesehen am 31.03.2025 | ||
| 520 | |a A longstanding conjecture of Seymour states that in every oriented graph there is a vertex whose second outneighbourhood is at least as large as its outneighbourhood. In this short note we show that, for any fixed p∈[0,1/2)\ pın łeft[0,1/2\right) \, a.a.s. every orientation of G(n,p)\ Głeft(n,p\right) \ satisfies Seymour's conjecture (as well as a related conjecture of Sullivan). This improves on a recent result of Botler, Moura and Naia. Moreover, we show that p=1/2\ p=1/2 \ is a natural barrier for this problem, in the following sense: for any fixed p∈(1/2,1)\ pın łeft(1/2,1\right) \, Seymour's conjecture is actually equivalent to saying that, with probability bounded away from 0, every orientation of G(n,p)\ Głeft(n,p\right) \ satisfies Seymour's conjecture. This provides a first reduction of the problem. For a second reduction, we consider minimum degrees and show that, if Seymour's conjecture is false, then there must exist arbitrarily large strongly-connected counterexamples with bounded minimum outdegree. Contrasting this, we show that vertex-minimal counterexamples must have large minimum outdegree. | ||
| 650 | 4 | |a oriented graphs | |
| 650 | 4 | |a random graphs | |
| 650 | 4 | |a second neighbourhood conjecture | |
| 700 | 1 | |a Girão, António |e VerfasserIn |4 aut | |
| 700 | 1 | |a Granet, Bertille |e VerfasserIn |0 (DE-588)1274018277 |0 (DE-627)1823726569 |4 aut | |
| 700 | 1 | |a Kronenberg, Gal |e VerfasserIn |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t Random structures & algorithms |d New York, NY [u.a.] : Wiley, 1990 |g 66(2025), 1 vom: Jan., Artikel-ID e21251, Seite 1-12 |h Online-Ressource |w (DE-627)306711141 |w (DE-600)1500812-5 |w (DE-576)082436185 |x 1098-2418 |7 nnas |a Seymour's second neighbourhood conjecture random graphs and reductions |
| 773 | 1 | 8 | |g volume:66 |g year:2025 |g number:1 |g month:01 |g elocationid:e21251 |g pages:1-12 |g extent:12 |a Seymour's second neighbourhood conjecture random graphs and reductions |
| 856 | 4 | 0 | |u https://doi.org/10.1002/rsa.21251 |x Verlag |x Resolving-System |z lizenzpflichtig |3 Volltext |
| 856 | 4 | 0 | |u https://onlinelibrary.wiley.com/doi/abs/10.1002/rsa.21251 |x Verlag |z lizenzpflichtig |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20250331 | ||
| 993 | |a Article | ||
| 994 | |a 2025 | ||
| 998 | |g 1274018277 |a Granet, Bertille |m 1274018277:Granet, Bertille |d 110000 |d 110300 |e 110000PG1274018277 |e 110300PG1274018277 |k 0/110000/ |k 1/110000/110300/ |p 3 | ||
| 998 | |g 1229848681 |a Espuny Díaz, Alberto |m 1229848681:Espuny Díaz, Alberto |d 110000 |d 110300 |e 110000PE1229848681 |e 110300PE1229848681 |k 0/110000/ |k 1/110000/110300/ |p 1 |x j | ||
| 999 | |a KXP-PPN1920856897 |e 469552399X | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"recId":"1920856897","language":["eng"],"type":{"media":"Online-Ressource","bibl":"article-journal"},"note":["Erstveröffentlichung: 7. August 2024","Gesehen am 31.03.2025"],"title":[{"title":"Seymour's second neighbourhood conjecture","subtitle":"random graphs and reductions","title_sort":"Seymour's second neighbourhood conjecture"}],"person":[{"family":"Espuny Díaz","given":"Alberto","roleDisplay":"VerfasserIn","display":"Espuny Díaz, Alberto","role":"aut"},{"family":"Girão","given":"António","display":"Girão, António","roleDisplay":"VerfasserIn","role":"aut"},{"given":"Bertille","family":"Granet","role":"aut","display":"Granet, Bertille","roleDisplay":"VerfasserIn"},{"given":"Gal","family":"Kronenberg","role":"aut","display":"Kronenberg, Gal","roleDisplay":"VerfasserIn"}],"relHost":[{"title":[{"title_sort":"Random structures & algorithms","title":"Random structures & algorithms"}],"note":["Gesehen am 17.02.05"],"disp":"Seymour's second neighbourhood conjecture random graphs and reductionsRandom structures & algorithms","type":{"bibl":"periodical","media":"Online-Ressource"},"recId":"306711141","language":["eng"],"pubHistory":["1.1990 -"],"titleAlt":[{"title":"Random structures and algorithms"}],"part":{"issue":"1","pages":"1-12","year":"2025","extent":"12","text":"66(2025), 1 vom: Jan., Artikel-ID e21251, Seite 1-12","volume":"66"},"origin":[{"publisherPlace":"New York, NY [u.a.]","publisher":"Wiley","dateIssuedKey":"1990","dateIssuedDisp":"1990-"}],"id":{"zdb":["1500812-5"],"eki":["306711141"],"doi":["10.1002/(ISSN)1098-2418"],"issn":["1098-2418"]},"physDesc":[{"extent":"Online-Ressource"}]}],"physDesc":[{"extent":"12 S."}],"id":{"doi":["10.1002/rsa.21251"],"eki":["1920856897"]},"origin":[{"dateIssuedKey":"2025","dateIssuedDisp":"January 2025"}],"name":{"displayForm":["Alberto Espuny Díaz, António Girão, Bertille Granet, Gal Kronenberg"]}} | ||
| SRT | |a ESPUNYDIAZSEYMOURSSE2025 | ||