Optimizing the prediction of depression remission: a longitudinal machinelearning approach
Decisions about when to change antidepressant treatment are complex and benefit from accurate prediction of treatment outcome. Prognostic accuracy can be enhanced by incorporating repeated assessments of symptom severity collected during treatment. Participants (n = 714) from the Genome-Based Therap...
Gespeichert in:
| Hauptverfasser: | , , , , , , , , , |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
April 2025
|
| In: |
American journal of medical genetics. Part B, Neuropsychiatric genetics
Year: 2025, Jahrgang: 198, Heft: 3, Pages: 1-9 |
| ISSN: | 1552-485X |
| DOI: | 10.1002/ajmg.b.33014 |
| Online-Zugang: | Verlag, kostenfrei, Volltext: https://doi.org/10.1002/ajmg.b.33014 Verlag, kostenfrei, Volltext: http://onlinelibrary.wiley.com/doi/abs/10.1002/ajmg.b.33014 |
| Verfasserangaben: | Ewan Carr, Marcella Rietschel, Ole Mors, Neven Henigsberg, Katherine J. Aitchison, Wolfgang Maier, Rudolf Uher, Anne Farmer, Peter McGuffin, Raquel Iniesta |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1921321490 | ||
| 003 | DE-627 | ||
| 005 | 20250717004529.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 250403s2025 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.1002/ajmg.b.33014 |2 doi | |
| 035 | |a (DE-627)1921321490 | ||
| 035 | |a (DE-599)KXP1921321490 | ||
| 035 | |a (OCoLC)1528044162 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 33 |2 sdnb | ||
| 100 | 1 | |a Carr, Ewan |e VerfasserIn |0 (DE-588)136221969X |0 (DE-627)1921322373 |4 aut | |
| 245 | 1 | 0 | |a Optimizing the prediction of depression remission |b a longitudinal machinelearning approach |c Ewan Carr, Marcella Rietschel, Ole Mors, Neven Henigsberg, Katherine J. Aitchison, Wolfgang Maier, Rudolf Uher, Anne Farmer, Peter McGuffin, Raquel Iniesta |
| 264 | 1 | |c April 2025 | |
| 300 | |a 9 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Erstmals veröffentlicht: 29. Oktober 2024 | ||
| 500 | |a Gesehen am 03.04.2025 | ||
| 520 | |a Decisions about when to change antidepressant treatment are complex and benefit from accurate prediction of treatment outcome. Prognostic accuracy can be enhanced by incorporating repeated assessments of symptom severity collected during treatment. Participants (n = 714) from the Genome-Based Therapeutic Drugs for Depression study received escitalopram or nortriptyline over 12 weeks. Remission was defined as scoring ≤ 7 on the Hamilton Rating Scale. Predictors included demographic, clinical, and genetic variables (at 0 weeks) and measures of symptom severity (at 0, 2, 4, and 6 weeks). Longitudinal descriptors extracted with growth curves and topological data analysis were used to inform prediction of remission. Repeated assessments produced gradual and drug-specific improvements in predictive performance. By Week 4, models' discrimination in all samples reached levels that might usefully inform treatment decisions (area under the receiver operating curve (AUC) = 0.777 for nortriptyline; AUC = 0.807 for escitalopram; AUC = 0.794 for combined sample). Decisions around switching or modifying treatments for depression can be informed by repeated symptom assessments collected during treatment, but not until 4 weeks after the start of treatment. | ||
| 650 | 4 | |a depression remission | |
| 650 | 4 | |a machine learning | |
| 650 | 4 | |a repeated measures | |
| 650 | 4 | |a topological data analysis | |
| 700 | 1 | |a Rietschel, Marcella |d 1957- |e VerfasserIn |0 (DE-588)112785751 |0 (DE-627)505574020 |0 (DE-576)289742307 |4 aut | |
| 700 | 1 | |a Mors, Ole |e VerfasserIn |4 aut | |
| 700 | 1 | |a Henigsberg, Neven |e VerfasserIn |4 aut | |
| 700 | 1 | |a Aitchison, Katherine J. |e VerfasserIn |4 aut | |
| 700 | 1 | |a Maier, Wolfgang |e VerfasserIn |4 aut | |
| 700 | 1 | |a Uher, Rudolf |e VerfasserIn |4 aut | |
| 700 | 1 | |a Farmer, Anne |e VerfasserIn |4 aut | |
| 700 | 1 | |a McGuffin, Peter |e VerfasserIn |4 aut | |
| 700 | 1 | |a Iniesta, Raquel |e VerfasserIn |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t American journal of medical genetics. Part B, Neuropsychiatric genetics |d Hoboken, NJ : Wiley-Liss, 2003 |g 198(2025), 3 vom: Apr., Artikel-ID e33014, Seite 1-9 |h Online-Ressource |w (DE-627)386577862 |w (DE-600)2143866-3 |w (DE-576)111418879 |x 1552-485X |7 nnas |a Optimizing the prediction of depression remission a longitudinal machinelearning approach |
| 773 | 1 | 8 | |g volume:198 |g year:2025 |g number:3 |g month:04 |g elocationid:e33014 |g pages:1-9 |g extent:9 |a Optimizing the prediction of depression remission a longitudinal machinelearning approach |
| 856 | 4 | 0 | |u https://doi.org/10.1002/ajmg.b.33014 |x Verlag |x Resolving-System |z kostenfrei |3 Volltext |
| 856 | 4 | 0 | |u http://onlinelibrary.wiley.com/doi/abs/10.1002/ajmg.b.33014 |x Verlag |z kostenfrei |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20250403 | ||
| 993 | |a Article | ||
| 994 | |a 2025 | ||
| 998 | |g 112785751 |a Rietschel, Marcella |m 112785751:Rietschel, Marcella |d 60000 |e 60000PR112785751 |k 0/60000/ |p 2 | ||
| 999 | |a KXP-PPN1921321490 |e 4696907090 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"language":["eng"],"relHost":[{"id":{"zdb":["2143866-3"],"issn":["1552-485X"],"eki":["386577862"],"doi":["10.1002/(ISSN)1552-485X"]},"part":{"year":"2025","issue":"3","extent":"9","pages":"1-9","volume":"198","text":"198(2025), 3 vom: Apr., Artikel-ID e33014, Seite 1-9"},"recId":"386577862","pubHistory":["116B.2003 - 153B.2010; 156.2011 -"],"title":[{"title":"American journal of medical genetics","title_sort":"American journal of medical genetics","partname":"Neuropsychiatric genetics"}],"titleAlt":[{"title":"American journal of medical genetics / B"},{"title":"Neuropsychiatric genetics"}],"disp":"Optimizing the prediction of depression remission a longitudinal machinelearning approachAmerican journal of medical genetics. Part B, Neuropsychiatric genetics","physDesc":[{"extent":"Online-Ressource"}],"language":["eng"],"origin":[{"dateIssuedKey":"2003","publisher":"Wiley-Liss","publisherPlace":"Hoboken, NJ","dateIssuedDisp":"2003-"}],"type":{"bibl":"periodical","media":"Online-Ressource"},"note":["Gesehen am 25.02.20"]}],"recId":"1921321490","title":[{"title_sort":"Optimizing the prediction of depression remission","subtitle":"a longitudinal machinelearning approach","title":"Optimizing the prediction of depression remission"}],"person":[{"display":"Carr, Ewan","given":"Ewan","family":"Carr","roleDisplay":"VerfasserIn","role":"aut"},{"given":"Marcella","display":"Rietschel, Marcella","role":"aut","family":"Rietschel","roleDisplay":"VerfasserIn"},{"given":"Ole","display":"Mors, Ole","role":"aut","roleDisplay":"VerfasserIn","family":"Mors"},{"display":"Henigsberg, Neven","given":"Neven","family":"Henigsberg","roleDisplay":"VerfasserIn","role":"aut"},{"role":"aut","family":"Aitchison","roleDisplay":"VerfasserIn","given":"Katherine J.","display":"Aitchison, Katherine J."},{"given":"Wolfgang","display":"Maier, Wolfgang","role":"aut","family":"Maier","roleDisplay":"VerfasserIn"},{"display":"Uher, Rudolf","given":"Rudolf","family":"Uher","roleDisplay":"VerfasserIn","role":"aut"},{"role":"aut","roleDisplay":"VerfasserIn","family":"Farmer","given":"Anne","display":"Farmer, Anne"},{"given":"Peter","display":"McGuffin, Peter","role":"aut","roleDisplay":"VerfasserIn","family":"McGuffin"},{"roleDisplay":"VerfasserIn","family":"Iniesta","role":"aut","display":"Iniesta, Raquel","given":"Raquel"}],"physDesc":[{"extent":"9 S."}],"type":{"media":"Online-Ressource","bibl":"article-journal"},"origin":[{"dateIssuedKey":"2025","dateIssuedDisp":"April 2025"}],"note":["Erstmals veröffentlicht: 29. Oktober 2024","Gesehen am 03.04.2025"],"name":{"displayForm":["Ewan Carr, Marcella Rietschel, Ole Mors, Neven Henigsberg, Katherine J. Aitchison, Wolfgang Maier, Rudolf Uher, Anne Farmer, Peter McGuffin, Raquel Iniesta"]},"id":{"doi":["10.1002/ajmg.b.33014"],"eki":["1921321490"]}} | ||
| SRT | |a CARREWANRIOPTIMIZING2025 | ||