Optimizing the prediction of depression remission: a longitudinal machinelearning approach

Decisions about when to change antidepressant treatment are complex and benefit from accurate prediction of treatment outcome. Prognostic accuracy can be enhanced by incorporating repeated assessments of symptom severity collected during treatment. Participants (n = 714) from the Genome-Based Therap...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Carr, Ewan (VerfasserIn) , Rietschel, Marcella (VerfasserIn) , Mors, Ole (VerfasserIn) , Henigsberg, Neven (VerfasserIn) , Aitchison, Katherine J. (VerfasserIn) , Maier, Wolfgang (VerfasserIn) , Uher, Rudolf (VerfasserIn) , Farmer, Anne (VerfasserIn) , McGuffin, Peter (VerfasserIn) , Iniesta, Raquel (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: April 2025
In: American journal of medical genetics. Part B, Neuropsychiatric genetics
Year: 2025, Jahrgang: 198, Heft: 3, Pages: 1-9
ISSN:1552-485X
DOI:10.1002/ajmg.b.33014
Online-Zugang:Verlag, kostenfrei, Volltext: https://doi.org/10.1002/ajmg.b.33014
Verlag, kostenfrei, Volltext: http://onlinelibrary.wiley.com/doi/abs/10.1002/ajmg.b.33014
Volltext
Verfasserangaben:Ewan Carr, Marcella Rietschel, Ole Mors, Neven Henigsberg, Katherine J. Aitchison, Wolfgang Maier, Rudolf Uher, Anne Farmer, Peter McGuffin, Raquel Iniesta

MARC

LEADER 00000caa a2200000 c 4500
001 1921321490
003 DE-627
005 20250717004529.0
007 cr uuu---uuuuu
008 250403s2025 xx |||||o 00| ||eng c
024 7 |a 10.1002/ajmg.b.33014  |2 doi 
035 |a (DE-627)1921321490 
035 |a (DE-599)KXP1921321490 
035 |a (OCoLC)1528044162 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Carr, Ewan  |e VerfasserIn  |0 (DE-588)136221969X  |0 (DE-627)1921322373  |4 aut 
245 1 0 |a Optimizing the prediction of depression remission  |b a longitudinal machinelearning approach  |c Ewan Carr, Marcella Rietschel, Ole Mors, Neven Henigsberg, Katherine J. Aitchison, Wolfgang Maier, Rudolf Uher, Anne Farmer, Peter McGuffin, Raquel Iniesta 
264 1 |c April 2025 
300 |a 9 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Erstmals veröffentlicht: 29. Oktober 2024 
500 |a Gesehen am 03.04.2025 
520 |a Decisions about when to change antidepressant treatment are complex and benefit from accurate prediction of treatment outcome. Prognostic accuracy can be enhanced by incorporating repeated assessments of symptom severity collected during treatment. Participants (n = 714) from the Genome-Based Therapeutic Drugs for Depression study received escitalopram or nortriptyline over 12 weeks. Remission was defined as scoring ≤ 7 on the Hamilton Rating Scale. Predictors included demographic, clinical, and genetic variables (at 0 weeks) and measures of symptom severity (at 0, 2, 4, and 6 weeks). Longitudinal descriptors extracted with growth curves and topological data analysis were used to inform prediction of remission. Repeated assessments produced gradual and drug-specific improvements in predictive performance. By Week 4, models' discrimination in all samples reached levels that might usefully inform treatment decisions (area under the receiver operating curve (AUC) = 0.777 for nortriptyline; AUC = 0.807 for escitalopram; AUC = 0.794 for combined sample). Decisions around switching or modifying treatments for depression can be informed by repeated symptom assessments collected during treatment, but not until 4 weeks after the start of treatment. 
650 4 |a depression remission 
650 4 |a machine learning 
650 4 |a repeated measures 
650 4 |a topological data analysis 
700 1 |a Rietschel, Marcella  |d 1957-  |e VerfasserIn  |0 (DE-588)112785751  |0 (DE-627)505574020  |0 (DE-576)289742307  |4 aut 
700 1 |a Mors, Ole  |e VerfasserIn  |4 aut 
700 1 |a Henigsberg, Neven  |e VerfasserIn  |4 aut 
700 1 |a Aitchison, Katherine J.  |e VerfasserIn  |4 aut 
700 1 |a Maier, Wolfgang  |e VerfasserIn  |4 aut 
700 1 |a Uher, Rudolf  |e VerfasserIn  |4 aut 
700 1 |a Farmer, Anne  |e VerfasserIn  |4 aut 
700 1 |a McGuffin, Peter  |e VerfasserIn  |4 aut 
700 1 |a Iniesta, Raquel  |e VerfasserIn  |4 aut 
773 0 8 |i Enthalten in  |t American journal of medical genetics. Part B, Neuropsychiatric genetics  |d Hoboken, NJ : Wiley-Liss, 2003  |g 198(2025), 3 vom: Apr., Artikel-ID e33014, Seite 1-9  |h Online-Ressource  |w (DE-627)386577862  |w (DE-600)2143866-3  |w (DE-576)111418879  |x 1552-485X  |7 nnas  |a Optimizing the prediction of depression remission a longitudinal machinelearning approach 
773 1 8 |g volume:198  |g year:2025  |g number:3  |g month:04  |g elocationid:e33014  |g pages:1-9  |g extent:9  |a Optimizing the prediction of depression remission a longitudinal machinelearning approach 
856 4 0 |u https://doi.org/10.1002/ajmg.b.33014  |x Verlag  |x Resolving-System  |z kostenfrei  |3 Volltext 
856 4 0 |u http://onlinelibrary.wiley.com/doi/abs/10.1002/ajmg.b.33014  |x Verlag  |z kostenfrei  |3 Volltext 
951 |a AR 
992 |a 20250403 
993 |a Article 
994 |a 2025 
998 |g 112785751  |a Rietschel, Marcella  |m 112785751:Rietschel, Marcella  |d 60000  |e 60000PR112785751  |k 0/60000/  |p 2 
999 |a KXP-PPN1921321490  |e 4696907090 
BIB |a Y 
SER |a journal 
JSO |a {"language":["eng"],"relHost":[{"id":{"zdb":["2143866-3"],"issn":["1552-485X"],"eki":["386577862"],"doi":["10.1002/(ISSN)1552-485X"]},"part":{"year":"2025","issue":"3","extent":"9","pages":"1-9","volume":"198","text":"198(2025), 3 vom: Apr., Artikel-ID e33014, Seite 1-9"},"recId":"386577862","pubHistory":["116B.2003 - 153B.2010; 156.2011 -"],"title":[{"title":"American journal of medical genetics","title_sort":"American journal of medical genetics","partname":"Neuropsychiatric genetics"}],"titleAlt":[{"title":"American journal of medical genetics / B"},{"title":"Neuropsychiatric genetics"}],"disp":"Optimizing the prediction of depression remission a longitudinal machinelearning approachAmerican journal of medical genetics. Part B, Neuropsychiatric genetics","physDesc":[{"extent":"Online-Ressource"}],"language":["eng"],"origin":[{"dateIssuedKey":"2003","publisher":"Wiley-Liss","publisherPlace":"Hoboken, NJ","dateIssuedDisp":"2003-"}],"type":{"bibl":"periodical","media":"Online-Ressource"},"note":["Gesehen am 25.02.20"]}],"recId":"1921321490","title":[{"title_sort":"Optimizing the prediction of depression remission","subtitle":"a longitudinal machinelearning approach","title":"Optimizing the prediction of depression remission"}],"person":[{"display":"Carr, Ewan","given":"Ewan","family":"Carr","roleDisplay":"VerfasserIn","role":"aut"},{"given":"Marcella","display":"Rietschel, Marcella","role":"aut","family":"Rietschel","roleDisplay":"VerfasserIn"},{"given":"Ole","display":"Mors, Ole","role":"aut","roleDisplay":"VerfasserIn","family":"Mors"},{"display":"Henigsberg, Neven","given":"Neven","family":"Henigsberg","roleDisplay":"VerfasserIn","role":"aut"},{"role":"aut","family":"Aitchison","roleDisplay":"VerfasserIn","given":"Katherine J.","display":"Aitchison, Katherine J."},{"given":"Wolfgang","display":"Maier, Wolfgang","role":"aut","family":"Maier","roleDisplay":"VerfasserIn"},{"display":"Uher, Rudolf","given":"Rudolf","family":"Uher","roleDisplay":"VerfasserIn","role":"aut"},{"role":"aut","roleDisplay":"VerfasserIn","family":"Farmer","given":"Anne","display":"Farmer, Anne"},{"given":"Peter","display":"McGuffin, Peter","role":"aut","roleDisplay":"VerfasserIn","family":"McGuffin"},{"roleDisplay":"VerfasserIn","family":"Iniesta","role":"aut","display":"Iniesta, Raquel","given":"Raquel"}],"physDesc":[{"extent":"9 S."}],"type":{"media":"Online-Ressource","bibl":"article-journal"},"origin":[{"dateIssuedKey":"2025","dateIssuedDisp":"April 2025"}],"note":["Erstmals veröffentlicht: 29. Oktober 2024","Gesehen am 03.04.2025"],"name":{"displayForm":["Ewan Carr, Marcella Rietschel, Ole Mors, Neven Henigsberg, Katherine J. Aitchison, Wolfgang Maier, Rudolf Uher, Anne Farmer, Peter McGuffin, Raquel Iniesta"]},"id":{"doi":["10.1002/ajmg.b.33014"],"eki":["1921321490"]}} 
SRT |a CARREWANRIOPTIMIZING2025