Advanced classifiers and feature reduction for accurate insomnia detection using multimodal dataset
Sleep deprivation is a significant contributor to various diseases, leading to poor cognitive function, decreased performance, and heart disorders. Insomnia, the most prevalent sleep disorder, requires more effective diagnosis and screening for proper treatment. Actigraphic data and its combination...
Gespeichert in:
| Hauptverfasser: | , , , , , |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
24 October 2024
|
| In: |
IEEE access
Year: 2024, Jahrgang: 12, Pages: 150664-150678 |
| ISSN: | 2169-3536 |
| DOI: | 10.1109/ACCESS.2024.3456904 |
| Online-Zugang: | Verlag, kostenfrei, Volltext: https://doi.org/10.1109/ACCESS.2024.3456904 Verlag, kostenfrei, Volltext: https://ieeexplore.ieee.org/document/10670396 |
| Verfasserangaben: | Ameya Chatur, Mostafa Haghi, (Member, IEEE), Nagarajan Ganapathy, (Member, IEEE), Nima TaheriNejad, (Member, IEEE), Ralf Seepold, (Member, IEEE), and Natividad Martínez Madrid, (Member, IEEE) |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1921442476 | ||
| 003 | DE-627 | ||
| 005 | 20250717004757.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 250404s2024 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.1109/ACCESS.2024.3456904 |2 doi | |
| 035 | |a (DE-627)1921442476 | ||
| 035 | |a (DE-599)KXP1921442476 | ||
| 035 | |a (OCoLC)1528044239 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 28 |2 sdnb | ||
| 100 | 1 | |a Chatur, Ameya |e VerfasserIn |0 (DE-588)1362364355 |0 (DE-627)192144553X |4 aut | |
| 245 | 1 | 0 | |a Advanced classifiers and feature reduction for accurate insomnia detection using multimodal dataset |c Ameya Chatur, Mostafa Haghi, (Member, IEEE), Nagarajan Ganapathy, (Member, IEEE), Nima TaheriNejad, (Member, IEEE), Ralf Seepold, (Member, IEEE), and Natividad Martínez Madrid, (Member, IEEE) |
| 264 | 1 | |c 24 October 2024 | |
| 300 | |b Illustrationen | ||
| 300 | |a 15 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Gesehen am 04.04.2025 | ||
| 520 | |a Sleep deprivation is a significant contributor to various diseases, leading to poor cognitive function, decreased performance, and heart disorders. Insomnia, the most prevalent sleep disorder, requires more effective diagnosis and screening for proper treatment. Actigraphic data and its combination with physiological sensors like electroencephalogram (EEG), electrocardiogram (ECG), and body temperature have proven significant in predicting insomnia using machine learning methods. Studies focusing solely on actigraphic data achieved an accuracy of 84%, combining it with other wearable devices increased accuracy to 88%, and 2-channel EEG alone yielded an accuracy of 92%, but limits scalability and practicality in real-world settings. Here we show that using the hybrid approach of incorporating both recursive feature elimination (RFE) and principal component analysis (PCA) on sleep and heart data features yields outstanding results, with the multi-layer perception (MLP) achieving an accuracy of 95.83% and an F1 score of 0.93. The top-ranked features are predominantly sleep-related and time-domain RR interval. The dependent variables in our study have been extracted from the self-report Pittsburgh Sleep Quality Index questionnaire responses. Our findings emphasize the importance of tailoring feature sets and employing appropriate reduction techniques for optimal predictive modeling in sleep-related studies. Our results demonstrate that the ensemble classifiers generalize well on the dataset regardless of the feature count, while other algorithms are hindered by the curse of dimensionality. | ||
| 650 | 4 | |a Accuracy | |
| 650 | 4 | |a Actigraphy | |
| 650 | 4 | |a classification | |
| 650 | 4 | |a Detection algorithms | |
| 650 | 4 | |a Feature extraction | |
| 650 | 4 | |a feature reduction | |
| 650 | 4 | |a heart rate variability | |
| 650 | 4 | |a Heart rate variability | |
| 650 | 4 | |a insomnia | |
| 650 | 4 | |a Principal component analysis | |
| 650 | 4 | |a Resonant frequency | |
| 650 | 4 | |a Sleep | |
| 650 | 4 | |a Support vector machines | |
| 700 | 1 | |a Haghi, Mostafa |d 1986- |e VerfasserIn |0 (DE-588)1197081232 |0 (DE-627)1678888575 |4 aut | |
| 700 | 1 | |a Ganapathy, Nagarajan |e VerfasserIn |4 aut | |
| 700 | 1 | |a Taherinejad, Nima |e VerfasserIn |0 (DE-588)127517549X |0 (DE-627)1826739688 |4 aut | |
| 700 | 1 | |8 1\p |a Seepold, Ralf E. D. |e VerfasserIn |0 (DE-588)173207847 |0 (DE-627)698128117 |0 (DE-576)134057902 |4 aut | |
| 700 | 1 | |8 2\p |a Martínez Madrid, Natividad |e VerfasserIn |0 (DE-588)1229640010 |0 (DE-627)175170243X |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |a Institute of Electrical and Electronics Engineers |t IEEE access |d New York, NY : IEEE, 2013 |g 12(2024), Seite 150664-150678 |h Online-Ressource |w (DE-627)728440385 |w (DE-600)2687964-5 |w (DE-576)373180713 |x 2169-3536 |7 nnas |
| 773 | 1 | 8 | |g volume:12 |g year:2024 |g pages:150664-150678 |g extent:15 |a Advanced classifiers and feature reduction for accurate insomnia detection using multimodal dataset |
| 856 | 4 | 0 | |u https://doi.org/10.1109/ACCESS.2024.3456904 |x Verlag |x Resolving-System |z kostenfrei |3 Volltext |
| 856 | 4 | 0 | |u https://ieeexplore.ieee.org/document/10670396 |x Verlag |z kostenfrei |3 Volltext |
| 883 | |8 1\p |a cgwrk |d 20250505 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | ||
| 883 | |8 2\p |a cgwrk |d 20250505 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | ||
| 951 | |a AR | ||
| 992 | |a 20250404 | ||
| 993 | |a Article | ||
| 994 | |a 2024 | ||
| 998 | |g 127517549X |a Taherinejad, Nima |m 127517549X:Taherinejad, Nima |d 700000 |d 720000 |e 700000PT127517549X |e 720000PT127517549X |k 0/700000/ |k 1/700000/720000/ |p 4 | ||
| 998 | |g 1197081232 |a Haghi, Mostafa |m 1197081232:Haghi, Mostafa |d 700000 |d 720000 |e 700000PH1197081232 |e 720000PH1197081232 |k 0/700000/ |k 1/700000/720000/ |p 2 | ||
| 999 | |a KXP-PPN1921442476 |e 4697240685 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"physDesc":[{"extent":"15 S.","noteIll":"Illustrationen"}],"relHost":[{"physDesc":[{"extent":"Online-Ressource"}],"origin":[{"publisherPlace":"New York, NY","dateIssuedDisp":"2013-","dateIssuedKey":"2013","publisher":"IEEE"}],"id":{"zdb":["2687964-5"],"eki":["728440385"],"issn":["2169-3536"]},"name":{"displayForm":["Institute of Electrical and Electronics Engineers"]},"pubHistory":["1.2013 -"],"titleAlt":[{"title":"Access"}],"part":{"year":"2024","pages":"150664-150678","text":"12(2024), Seite 150664-150678","volume":"12","extent":"15"},"disp":"Institute of Electrical and Electronics EngineersIEEE access","type":{"media":"Online-Ressource","bibl":"periodical"},"note":["Gesehen am 24.10.12"],"corporate":[{"role":"aut","display":"Institute of Electrical and Electronics Engineers","roleDisplay":"VerfasserIn"}],"language":["eng"],"recId":"728440385","title":[{"title_sort":"IEEE access","subtitle":"practical research, open solutions","title":"IEEE access"}]}],"name":{"displayForm":["Ameya Chatur, Mostafa Haghi, (Member, IEEE), Nagarajan Ganapathy, (Member, IEEE), Nima TaheriNejad, (Member, IEEE), Ralf Seepold, (Member, IEEE), and Natividad Martínez Madrid, (Member, IEEE)"]},"origin":[{"dateIssuedDisp":"24 October 2024","dateIssuedKey":"2024"}],"id":{"eki":["1921442476"],"doi":["10.1109/ACCESS.2024.3456904"]},"type":{"media":"Online-Ressource","bibl":"article-journal"},"note":["Gesehen am 04.04.2025"],"recId":"1921442476","language":["eng"],"person":[{"given":"Ameya","family":"Chatur","role":"aut","roleDisplay":"VerfasserIn","display":"Chatur, Ameya"},{"family":"Haghi","given":"Mostafa","display":"Haghi, Mostafa","roleDisplay":"VerfasserIn","role":"aut"},{"family":"Ganapathy","given":"Nagarajan","roleDisplay":"VerfasserIn","display":"Ganapathy, Nagarajan","role":"aut"},{"role":"aut","roleDisplay":"VerfasserIn","display":"Taherinejad, Nima","given":"Nima","family":"Taherinejad"},{"role":"aut","display":"Seepold, Ralf E. D.","roleDisplay":"VerfasserIn","given":"Ralf E. D.","family":"Seepold"},{"given":"Natividad","family":"Martínez Madrid","role":"aut","display":"Martínez Madrid, Natividad","roleDisplay":"VerfasserIn"}],"title":[{"title":"Advanced classifiers and feature reduction for accurate insomnia detection using multimodal dataset","title_sort":"Advanced classifiers and feature reduction for accurate insomnia detection using multimodal dataset"}]} | ||
| SRT | |a CHATURAMEYADVANCEDCL2420 | ||