Advanced classifiers and feature reduction for accurate insomnia detection using multimodal dataset

Sleep deprivation is a significant contributor to various diseases, leading to poor cognitive function, decreased performance, and heart disorders. Insomnia, the most prevalent sleep disorder, requires more effective diagnosis and screening for proper treatment. Actigraphic data and its combination...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Chatur, Ameya (VerfasserIn) , Haghi, Mostafa (VerfasserIn) , Ganapathy, Nagarajan (VerfasserIn) , Taherinejad, Nima (VerfasserIn) , Seepold, Ralf E. D. (VerfasserIn) , Martínez Madrid, Natividad (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 24 October 2024
In: IEEE access
Year: 2024, Jahrgang: 12, Pages: 150664-150678
ISSN:2169-3536
DOI:10.1109/ACCESS.2024.3456904
Online-Zugang:Verlag, kostenfrei, Volltext: https://doi.org/10.1109/ACCESS.2024.3456904
Verlag, kostenfrei, Volltext: https://ieeexplore.ieee.org/document/10670396
Volltext
Verfasserangaben:Ameya Chatur, Mostafa Haghi, (Member, IEEE), Nagarajan Ganapathy, (Member, IEEE), Nima TaheriNejad, (Member, IEEE), Ralf Seepold, (Member, IEEE), and Natividad Martínez Madrid, (Member, IEEE)

MARC

LEADER 00000caa a2200000 c 4500
001 1921442476
003 DE-627
005 20250717004757.0
007 cr uuu---uuuuu
008 250404s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/ACCESS.2024.3456904  |2 doi 
035 |a (DE-627)1921442476 
035 |a (DE-599)KXP1921442476 
035 |a (OCoLC)1528044239 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 28  |2 sdnb 
100 1 |a Chatur, Ameya  |e VerfasserIn  |0 (DE-588)1362364355  |0 (DE-627)192144553X  |4 aut 
245 1 0 |a Advanced classifiers and feature reduction for accurate insomnia detection using multimodal dataset  |c Ameya Chatur, Mostafa Haghi, (Member, IEEE), Nagarajan Ganapathy, (Member, IEEE), Nima TaheriNejad, (Member, IEEE), Ralf Seepold, (Member, IEEE), and Natividad Martínez Madrid, (Member, IEEE) 
264 1 |c 24 October 2024 
300 |b Illustrationen 
300 |a 15 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 04.04.2025 
520 |a Sleep deprivation is a significant contributor to various diseases, leading to poor cognitive function, decreased performance, and heart disorders. Insomnia, the most prevalent sleep disorder, requires more effective diagnosis and screening for proper treatment. Actigraphic data and its combination with physiological sensors like electroencephalogram (EEG), electrocardiogram (ECG), and body temperature have proven significant in predicting insomnia using machine learning methods. Studies focusing solely on actigraphic data achieved an accuracy of 84%, combining it with other wearable devices increased accuracy to 88%, and 2-channel EEG alone yielded an accuracy of 92%, but limits scalability and practicality in real-world settings. Here we show that using the hybrid approach of incorporating both recursive feature elimination (RFE) and principal component analysis (PCA) on sleep and heart data features yields outstanding results, with the multi-layer perception (MLP) achieving an accuracy of 95.83% and an F1 score of 0.93. The top-ranked features are predominantly sleep-related and time-domain RR interval. The dependent variables in our study have been extracted from the self-report Pittsburgh Sleep Quality Index questionnaire responses. Our findings emphasize the importance of tailoring feature sets and employing appropriate reduction techniques for optimal predictive modeling in sleep-related studies. Our results demonstrate that the ensemble classifiers generalize well on the dataset regardless of the feature count, while other algorithms are hindered by the curse of dimensionality. 
650 4 |a Accuracy 
650 4 |a Actigraphy 
650 4 |a classification 
650 4 |a Detection algorithms 
650 4 |a Feature extraction 
650 4 |a feature reduction 
650 4 |a heart rate variability 
650 4 |a Heart rate variability 
650 4 |a insomnia 
650 4 |a Principal component analysis 
650 4 |a Resonant frequency 
650 4 |a Sleep 
650 4 |a Support vector machines 
700 1 |a Haghi, Mostafa  |d 1986-  |e VerfasserIn  |0 (DE-588)1197081232  |0 (DE-627)1678888575  |4 aut 
700 1 |a Ganapathy, Nagarajan  |e VerfasserIn  |4 aut 
700 1 |a Taherinejad, Nima  |e VerfasserIn  |0 (DE-588)127517549X  |0 (DE-627)1826739688  |4 aut 
700 1 |8 1\p  |a Seepold, Ralf E. D.  |e VerfasserIn  |0 (DE-588)173207847  |0 (DE-627)698128117  |0 (DE-576)134057902  |4 aut 
700 1 |8 2\p  |a Martínez Madrid, Natividad  |e VerfasserIn  |0 (DE-588)1229640010  |0 (DE-627)175170243X  |4 aut 
773 0 8 |i Enthalten in  |a Institute of Electrical and Electronics Engineers  |t IEEE access  |d New York, NY : IEEE, 2013  |g 12(2024), Seite 150664-150678  |h Online-Ressource  |w (DE-627)728440385  |w (DE-600)2687964-5  |w (DE-576)373180713  |x 2169-3536  |7 nnas 
773 1 8 |g volume:12  |g year:2024  |g pages:150664-150678  |g extent:15  |a Advanced classifiers and feature reduction for accurate insomnia detection using multimodal dataset 
856 4 0 |u https://doi.org/10.1109/ACCESS.2024.3456904  |x Verlag  |x Resolving-System  |z kostenfrei  |3 Volltext 
856 4 0 |u https://ieeexplore.ieee.org/document/10670396  |x Verlag  |z kostenfrei  |3 Volltext 
883 |8 1\p  |a cgwrk  |d 20250505  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
883 |8 2\p  |a cgwrk  |d 20250505  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
951 |a AR 
992 |a 20250404 
993 |a Article 
994 |a 2024 
998 |g 127517549X  |a Taherinejad, Nima  |m 127517549X:Taherinejad, Nima  |d 700000  |d 720000  |e 700000PT127517549X  |e 720000PT127517549X  |k 0/700000/  |k 1/700000/720000/  |p 4 
998 |g 1197081232  |a Haghi, Mostafa  |m 1197081232:Haghi, Mostafa  |d 700000  |d 720000  |e 700000PH1197081232  |e 720000PH1197081232  |k 0/700000/  |k 1/700000/720000/  |p 2 
999 |a KXP-PPN1921442476  |e 4697240685 
BIB |a Y 
SER |a journal 
JSO |a {"physDesc":[{"extent":"15 S.","noteIll":"Illustrationen"}],"relHost":[{"physDesc":[{"extent":"Online-Ressource"}],"origin":[{"publisherPlace":"New York, NY","dateIssuedDisp":"2013-","dateIssuedKey":"2013","publisher":"IEEE"}],"id":{"zdb":["2687964-5"],"eki":["728440385"],"issn":["2169-3536"]},"name":{"displayForm":["Institute of Electrical and Electronics Engineers"]},"pubHistory":["1.2013 -"],"titleAlt":[{"title":"Access"}],"part":{"year":"2024","pages":"150664-150678","text":"12(2024), Seite 150664-150678","volume":"12","extent":"15"},"disp":"Institute of Electrical and Electronics EngineersIEEE access","type":{"media":"Online-Ressource","bibl":"periodical"},"note":["Gesehen am 24.10.12"],"corporate":[{"role":"aut","display":"Institute of Electrical and Electronics Engineers","roleDisplay":"VerfasserIn"}],"language":["eng"],"recId":"728440385","title":[{"title_sort":"IEEE access","subtitle":"practical research, open solutions","title":"IEEE access"}]}],"name":{"displayForm":["Ameya Chatur, Mostafa Haghi, (Member, IEEE), Nagarajan Ganapathy, (Member, IEEE), Nima TaheriNejad, (Member, IEEE), Ralf Seepold, (Member, IEEE), and Natividad Martínez Madrid, (Member, IEEE)"]},"origin":[{"dateIssuedDisp":"24 October 2024","dateIssuedKey":"2024"}],"id":{"eki":["1921442476"],"doi":["10.1109/ACCESS.2024.3456904"]},"type":{"media":"Online-Ressource","bibl":"article-journal"},"note":["Gesehen am 04.04.2025"],"recId":"1921442476","language":["eng"],"person":[{"given":"Ameya","family":"Chatur","role":"aut","roleDisplay":"VerfasserIn","display":"Chatur, Ameya"},{"family":"Haghi","given":"Mostafa","display":"Haghi, Mostafa","roleDisplay":"VerfasserIn","role":"aut"},{"family":"Ganapathy","given":"Nagarajan","roleDisplay":"VerfasserIn","display":"Ganapathy, Nagarajan","role":"aut"},{"role":"aut","roleDisplay":"VerfasserIn","display":"Taherinejad, Nima","given":"Nima","family":"Taherinejad"},{"role":"aut","display":"Seepold, Ralf E. D.","roleDisplay":"VerfasserIn","given":"Ralf E. D.","family":"Seepold"},{"given":"Natividad","family":"Martínez Madrid","role":"aut","display":"Martínez Madrid, Natividad","roleDisplay":"VerfasserIn"}],"title":[{"title":"Advanced classifiers and feature reduction for accurate insomnia detection using multimodal dataset","title_sort":"Advanced classifiers and feature reduction for accurate insomnia detection using multimodal dataset"}]} 
SRT |a CHATURAMEYADVANCEDCL2420