AutoML-driven insights into patient outcomes and emergency care during Romania’s first wave of COVID-19

Background: The COVID-19 pandemic severely impacted healthcare systems, affecting patient outcomes and resource allocation. This study applied automated machine learning (AutoML) to analyze key health outputs, such as discharge conditions, mortality, and COVID-19 cases, with the goal of improving re...

Full description

Saved in:
Bibliographic Details
Main Authors: Simon, Sonja C. S. (Author) , Bibi, Igor (Author) , Schaffert, Daniel (Author) , Benecke, Johannes (Author) , Martin, Niklas (Author) , Leipe, Jan (Author) , Vladescu, Cristian (Author) , Olsavszky, Victor (Author)
Format: Article (Journal)
Language:English
Published: 15 December 2024
In: Bioengineering
Year: 2024, Volume: 11, Issue: 12, Pages: 1-22
ISSN:2306-5354
DOI:10.3390/bioengineering11121272
Online Access:Verlag, kostenfrei, Volltext: https://doi.org/10.3390/bioengineering11121272
Verlag, kostenfrei, Volltext: https://www.mdpi.com/2306-5354/11/12/1272
Get full text
Author Notes:Sonja C. S. Simon, Igor Bibi, Daniel Schaffert, Johannes Benecke, Niklas Martin, Jan Leipe, Cristian Vladescu and Victor Olsavszky

MARC

LEADER 00000caa a2200000 c 4500
001 1923359584
003 DE-627
005 20250717010810.0
007 cr uuu---uuuuu
008 250422s2024 xx |||||o 00| ||eng c
024 7 |a 10.3390/bioengineering11121272  |2 doi 
035 |a (DE-627)1923359584 
035 |a (DE-599)KXP1923359584 
035 |a (OCoLC)1528044536 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Simon, Sonja C. S.  |d 1990-  |e VerfasserIn  |0 (DE-588)1208016903  |0 (DE-627)1694314316  |4 aut 
245 1 0 |a AutoML-driven insights into patient outcomes and emergency care during Romania’s first wave of COVID-19  |c Sonja C. S. Simon, Igor Bibi, Daniel Schaffert, Johannes Benecke, Niklas Martin, Jan Leipe, Cristian Vladescu and Victor Olsavszky 
246 1 |i Titel des übergeordneten Special issue  |a Artificial intelligence in healthcare 
264 1 |c 15 December 2024 
300 |a 22 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 22.04.2025 
520 |a Background: The COVID-19 pandemic severely impacted healthcare systems, affecting patient outcomes and resource allocation. This study applied automated machine learning (AutoML) to analyze key health outputs, such as discharge conditions, mortality, and COVID-19 cases, with the goal of improving responses to future crises. Methods: AutoML was used to train and validate models on an ICD-10 dataset covering the first wave of COVID-19 in Romania (January-September 2020). Results: For discharge outcomes, Light Gradient Boosted models achieved an F1 score of 0.9644, while for mortality 0.7545 was reached. A Generalized Linear Model blender achieved an F1 score of 0.9884 for “acute or emergency” cases, and an average blender reached 0.923 for COVID-19 cases. Older age, specific hospitals, and oncology wards were less associated with improved recovery rates, while mortality was linked to abnormal lab results and cardiovascular/respiratory diseases. Patients admitted without referral, or patients in hospitals in the central region and the capital region of Romania were more likely to be acute cases. Finally, counties such as Argeş (South-Muntenia) and Brașov (Center) showed higher COVID-19 infection rates regardless of age. Conclusions: AutoML provided valuable insights into patient outcomes, highlighting variations in care and the need for targeted health strategies for both COVID-19 and other health challenges. 
650 4 |a artificial intelligence 
650 4 |a automated machine learning 
650 4 |a COVID-19 
650 4 |a disease prediction 
700 1 |a Bibi, Igor  |d 1998-  |e VerfasserIn  |0 (DE-588)1333248881  |0 (DE-627)1891358960  |4 aut 
700 1 |a Schaffert, Daniel  |d 1993-  |e VerfasserIn  |0 (DE-588)133325010X  |0 (DE-627)189136149X  |4 aut 
700 1 |a Benecke, Johannes  |d 1987-  |e VerfasserIn  |0 (DE-588)1155605365  |0 (DE-627)1017880042  |0 (DE-576)501772308  |4 aut 
700 1 |a Martin, Niklas  |e VerfasserIn  |4 aut 
700 1 |a Leipe, Jan  |d 1976-  |e VerfasserIn  |0 (DE-588)131797824  |0 (DE-627)51426280X  |0 (DE-576)298758563  |4 aut 
700 1 |a Vladescu, Cristian  |e VerfasserIn  |4 aut 
700 1 |a Olsavszky, Victor  |d 1988-  |e VerfasserIn  |0 (DE-588)1157102999  |0 (DE-627)1020140542  |0 (DE-576)306357585  |4 aut 
773 0 8 |i Enthalten in  |t Bioengineering  |d Basel : MDPI, 2014  |g 11(2024), 12, Artikel-ID 1272, Seite 1-22  |h Online-Ressource  |w (DE-627)774814020  |w (DE-600)2746191-9  |w (DE-576)399193375  |x 2306-5354  |7 nnas  |a AutoML-driven insights into patient outcomes and emergency care during Romania’s first wave of COVID-19 
773 1 8 |g volume:11  |g year:2024  |g number:12  |g elocationid:1272  |g pages:1-22  |g extent:22  |a AutoML-driven insights into patient outcomes and emergency care during Romania’s first wave of COVID-19 
856 4 0 |u https://doi.org/10.3390/bioengineering11121272  |x Verlag  |x Resolving-System  |z kostenfrei  |3 Volltext 
856 4 0 |u https://www.mdpi.com/2306-5354/11/12/1272  |x Verlag  |z kostenfrei  |3 Volltext 
951 |a AR 
992 |a 20250422 
993 |a Article 
994 |a 2024 
998 |g 1157102999  |a Olsavszky, Victor  |m 1157102999:Olsavszky, Victor  |d 60000  |d 61900  |e 60000PO1157102999  |e 61900PO1157102999  |k 0/60000/  |k 1/60000/61900/  |p 8  |y j 
998 |g 131797824  |a Leipe, Jan  |m 131797824:Leipe, Jan  |d 60000  |d 61400  |e 60000PL131797824  |e 61400PL131797824  |k 0/60000/  |k 1/60000/61400/  |p 6 
998 |g 1155605365  |a Benecke, Johannes  |m 1155605365:Benecke, Johannes  |p 4 
998 |g 133325010X  |a Schaffert, Daniel  |m 133325010X:Schaffert, Daniel  |d 60000  |e 60000PS133325010X  |k 0/60000/  |p 3 
998 |g 1333248881  |a Bibi, Igor  |m 1333248881:Bibi, Igor  |d 60000  |e 60000PB1333248881  |k 0/60000/  |p 2 
998 |g 1208016903  |a Simon, Sonja C. S.  |m 1208016903:Simon, Sonja C. S.  |d 60000  |d 61900  |e 60000PS1208016903  |e 61900PS1208016903  |k 0/60000/  |k 1/60000/61900/  |p 1  |x j 
999 |a KXP-PPN1923359584  |e 4707907091 
BIB |a Y 
SER |a journal 
JSO |a {"titleAlt":[{"title":"Artificial intelligence in healthcare"}],"title":[{"title_sort":"AutoML-driven insights into patient outcomes and emergency care during Romania’s first wave of COVID-19","title":"AutoML-driven insights into patient outcomes and emergency care during Romania’s first wave of COVID-19"}],"language":["eng"],"origin":[{"dateIssuedDisp":"15 December 2024","dateIssuedKey":"2024"}],"name":{"displayForm":["Sonja C. S. Simon, Igor Bibi, Daniel Schaffert, Johannes Benecke, Niklas Martin, Jan Leipe, Cristian Vladescu and Victor Olsavszky"]},"recId":"1923359584","person":[{"role":"aut","display":"Simon, Sonja C. S.","given":"Sonja C. S.","family":"Simon"},{"family":"Bibi","display":"Bibi, Igor","given":"Igor","role":"aut"},{"family":"Schaffert","given":"Daniel","display":"Schaffert, Daniel","role":"aut"},{"role":"aut","family":"Benecke","given":"Johannes","display":"Benecke, Johannes"},{"display":"Martin, Niklas","given":"Niklas","family":"Martin","role":"aut"},{"given":"Jan","display":"Leipe, Jan","family":"Leipe","role":"aut"},{"given":"Cristian","display":"Vladescu, Cristian","family":"Vladescu","role":"aut"},{"family":"Olsavszky","display":"Olsavszky, Victor","given":"Victor","role":"aut"}],"note":["Gesehen am 22.04.2025"],"relHost":[{"note":["Gesehen am 20.05.2020"],"physDesc":[{"extent":"Online-Ressource"}],"part":{"extent":"22","issue":"12","text":"11(2024), 12, Artikel-ID 1272, Seite 1-22","volume":"11","year":"2024","pages":"1-22"},"id":{"zdb":["2746191-9"],"issn":["2306-5354"],"eki":["774814020"]},"title":[{"title_sort":"Bioengineering","subtitle":"open access journal","title":"Bioengineering"}],"origin":[{"dateIssuedKey":"2014","publisherPlace":"Basel","publisher":"MDPI","dateIssuedDisp":"2014-"}],"type":{"bibl":"periodical","media":"Online-Ressource"},"pubHistory":["1.2014 -"],"language":["eng"],"disp":"AutoML-driven insights into patient outcomes and emergency care during Romania’s first wave of COVID-19Bioengineering","recId":"774814020"}],"id":{"eki":["1923359584"],"doi":["10.3390/bioengineering11121272"]},"type":{"media":"Online-Ressource","bibl":"article-journal"},"physDesc":[{"extent":"22 S."}]} 
SRT |a SIMONSONJAAUTOMLDRIV1520