MetalinksDB: a flexible and contextualizable resource of metabolite-protein interactions

From the catalytic breakdown of nutrients to signaling, interactions between metabolites and proteins play an essential role in cellular function. An important case is cell-cell communication, where metabolites, secreted into the microenvironment, initiate signaling cascades by binding to intra- or...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Farr, Elias (VerfasserIn) , Dimitrov, Daniel (VerfasserIn) , Schmidt, Christina (VerfasserIn) , Türei, Dénes (VerfasserIn) , Lobentanzer, Sebastian (VerfasserIn) , Dugourd, Aurélien (VerfasserIn) , Sáez Rodríguez, Julio (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: July 2024
In: Briefings in bioinformatics
Year: 2024, Jahrgang: 25, Heft: 4, Pages: bbae347$p1-12
ISSN:1477-4054
DOI:10.1093/bib/bbae347
Online-Zugang:Verlag, kostenfrei, Volltext: https://doi.org/10.1093/bib/bbae347
Volltext
Verfasserangaben:Elias Farr, Daniel Dimitrov, Christina Schmidt, Denes Turei, Sebastian Lobentanzer, Aurelien Dugourd, Julio Saez-Rodriguez
Beschreibung
Zusammenfassung:From the catalytic breakdown of nutrients to signaling, interactions between metabolites and proteins play an essential role in cellular function. An important case is cell-cell communication, where metabolites, secreted into the microenvironment, initiate signaling cascades by binding to intra- or extracellular receptors of neighboring cells. Protein-protein cell-cell communication interactions are routinely predicted from transcriptomic data. However, inferring metabolite-mediated intercellular signaling remains challenging, partially due to the limited size of intercellular prior knowledge resources focused on metabolites. Here, we leverage knowledge-graph infrastructure to integrate generalistic metabolite-protein with curated metabolite-receptor resources to create MetalinksDB. MetalinksDB is an order of magnitude larger than existing metabolite-receptor resources and can be tailored to specific biological contexts, such as diseases, pathways, or tissue/cellular locations. We demonstrate MetalinksDB’s utility in identifying deregulated processes in renal cancer using multi-omics bulk data. Furthermore, we infer metabolite-driven intercellular signaling in acute kidney injury using spatial transcriptomics data. MetalinksDB is a comprehensive and customizable database of intercellular metabolite-protein interactions, accessible via a web interface (https://metalinks.omnipathdb.org/) and programmatically as a knowledge graph (https://github.com/biocypher/metalinks). We anticipate that by enabling diverse analyses tailored to specific biological contexts, MetalinksDB will facilitate the discovery of disease-relevant metabolite-mediated intercellular signaling processes.
Beschreibung:Veröffentlicht: 22. Juli 2024
Gesehen am 28.04.2025
Beschreibung:Online Resource
ISSN:1477-4054
DOI:10.1093/bib/bbae347