Efficient functional Lasso kernel smoothing for high-dimensional additive regression

Smooth backfitting has been proposed and proved as a powerful nonparametric estimation technique for additive regression models in various settings. Existing studies are restricted to cases with a moderate number of covariates and are not directly applicable to high dimensional settings. In this pap...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Lee, Eun Ryung (VerfasserIn) , Park, Seyoung (VerfasserIn) , Mammen, Enno (VerfasserIn) , Park, Byeong U. (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: August 2024
In: The annals of statistics
Year: 2024, Jahrgang: 52, Heft: 4, Pages: 1741-1773
ISSN:2168-8966
DOI:10.1214/24-AOS2415
Online-Zugang:Verlag, kostenfrei, Volltext: https://doi.org/10.1214/24-AOS2415
Verlag, kostenfrei, Volltext: https://projecteuclid.org/journals/annals-of-statistics/volume-52/issue-4/Efficient-functional-Lasso-kernel-smoothing-for-high-dimensional-additive-regression/10.1214/24-AOS2415.full
Volltext
Verfasserangaben:Eun Ryung Lee, Seyoung Park, Enno Mammen and Byeong U. Park

MARC

LEADER 00000caa a2200000 c 4500
001 1923795627
003 DE-627
005 20250717012023.0
007 cr uuu---uuuuu
008 250428s2024 xx |||||o 00| ||eng c
024 7 |a 10.1214/24-AOS2415  |2 doi 
035 |a (DE-627)1923795627 
035 |a (DE-599)KXP1923795627 
035 |a (OCoLC)1528044821 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Lee, Eun Ryung  |e VerfasserIn  |0 (DE-588)1200568052  |0 (DE-627)1683691717  |4 aut 
245 1 0 |a Efficient functional Lasso kernel smoothing for high-dimensional additive regression  |c Eun Ryung Lee, Seyoung Park, Enno Mammen and Byeong U. Park 
264 1 |c August 2024 
300 |a 33 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 28.04.2025 
520 |a Smooth backfitting has been proposed and proved as a powerful nonparametric estimation technique for additive regression models in various settings. Existing studies are restricted to cases with a moderate number of covariates and are not directly applicable to high dimensional settings. In this paper, we develop new kernel estimators based on the idea of smooth backfitting for high dimensional additive models. We introduce a novel penalization scheme, combining the idea of functional Lasso with the smooth backfitting technique. We investigate the theoretical properties of the functional Lasso smooth backfitting estimation. For the implementation of the proposed method, we devise a simple iterative algorithm where the iteration is defined by a truncated projection operator. The algorithm has only an additional thresholding operator over the projection-based iteration of the smooth backfitting algorithm. We further present a debiased version of the proposed estimator with implementation details, and investigate its theoretical properties for statistical inference. We demonstrate the finite sample performance of the methods via simulation and real data analysis. 
650 4 |a 62G05 
650 4 |a 62G08 
650 4 |a 62G20 
650 4 |a Additive models 
650 4 |a debiasing 
650 4 |a functional Lasso 
650 4 |a kernel smoothing 
650 4 |a Nonparametric regression 
650 4 |a Penalization 
650 4 |a smooth backfitting 
650 4 |a Sparse estimation 
700 1 |a Park, Seyoung  |e VerfasserIn  |4 aut 
700 1 |a Mammen, Enno  |d 1955-  |e VerfasserIn  |0 (DE-588)170668606  |0 (DE-627)060788658  |0 (DE-576)13153159X  |4 aut 
700 1 |a Park, Byeong U.  |e VerfasserIn  |4 aut 
773 0 8 |i Enthalten in  |t The annals of statistics  |d Hayward, Calif. : IMS Business Off., 1973  |g 52(2024), 4 vom: Aug., Seite 1741-1773  |h Online-Ressource  |w (DE-627)270129162  |w (DE-600)1476670-X  |w (DE-576)094425213  |x 2168-8966  |7 nnas  |a Efficient functional Lasso kernel smoothing for high-dimensional additive regression 
773 1 8 |g volume:52  |g year:2024  |g number:4  |g month:08  |g pages:1741-1773  |g extent:33  |a Efficient functional Lasso kernel smoothing for high-dimensional additive regression 
856 4 0 |u https://doi.org/10.1214/24-AOS2415  |x Verlag  |x Resolving-System  |z kostenfrei  |3 Volltext 
856 4 0 |u https://projecteuclid.org/journals/annals-of-statistics/volume-52/issue-4/Efficient-functional-Lasso-kernel-smoothing-for-high-dimensional-additive-regression/10.1214/24-AOS2415.full  |x Verlag  |z kostenfrei  |3 Volltext 
951 |a AR 
992 |a 20250428 
993 |a Article 
994 |a 2024 
998 |g 170668606  |a Mammen, Enno  |m 170668606:Mammen, Enno  |d 110000  |d 110400  |e 110000PM170668606  |e 110400PM170668606  |k 0/110000/  |k 1/110000/110400/  |p 3 
999 |a KXP-PPN1923795627  |e 4711280391 
BIB |a Y 
SER |a journal 
JSO |a {"person":[{"display":"Lee, Eun Ryung","family":"Lee","given":"Eun Ryung","role":"aut"},{"given":"Seyoung","role":"aut","display":"Park, Seyoung","family":"Park"},{"role":"aut","given":"Enno","family":"Mammen","display":"Mammen, Enno"},{"display":"Park, Byeong U.","family":"Park","given":"Byeong U.","role":"aut"}],"id":{"eki":["1923795627"],"doi":["10.1214/24-AOS2415"]},"title":[{"title":"Efficient functional Lasso kernel smoothing for high-dimensional additive regression","title_sort":"Efficient functional Lasso kernel smoothing for high-dimensional additive regression"}],"relHost":[{"origin":[{"publisherPlace":"Hayward, Calif.","dateIssuedKey":"1973","dateIssuedDisp":"1973-","publisher":"IMS Business Off."}],"recId":"270129162","note":["Gesehen am 08-06-21"],"language":["eng"],"pubHistory":["1.1973 - 23.1995; 24.1996 -"],"part":{"issue":"4","pages":"1741-1773","year":"2024","text":"52(2024), 4 vom: Aug., Seite 1741-1773","volume":"52","extent":"33"},"disp":"Efficient functional Lasso kernel smoothing for high-dimensional additive regressionThe annals of statistics","corporate":[{"role":"isb","display":"Institute of Mathematical Statistics"}],"type":{"bibl":"periodical","media":"Online-Ressource"},"title":[{"subtitle":"an official journal of the Institute of Mathematical Statistics","title_sort":"annals of statistics","title":"The annals of statistics"}],"physDesc":[{"extent":"Online-Ressource"}],"id":{"issn":["2168-8966"],"eki":["270129162"],"zdb":["1476670-X"]}}],"physDesc":[{"extent":"33 S."}],"type":{"media":"Online-Ressource","bibl":"article-journal"},"recId":"1923795627","language":["eng"],"note":["Gesehen am 28.04.2025"],"origin":[{"dateIssuedKey":"2024","dateIssuedDisp":"August 2024"}],"name":{"displayForm":["Eun Ryung Lee, Seyoung Park, Enno Mammen and Byeong U. Park"]}} 
SRT |a LEEEUNRYUNEFFICIENTF2024