Detection of suicidality from medical text using privacy-preserving large language models: feature

BackgroundAttempts to use artificial intelligence (AI) in psychiatric disorders show moderate success, highlighting the potential of incorporating information from clinical assessments to improve the models. This study focuses on using large language models (LLMs) to detect suicide risk from medical...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Wiest, Isabella (VerfasserIn) , Verhees, Falk Gerrik (VerfasserIn) , Ferber, Dyke (VerfasserIn) , Zhu, Jiefu (VerfasserIn) , Bauer, Michael (VerfasserIn) , Lewitzka, Ute (VerfasserIn) , Pfennig, Andrea (VerfasserIn) , Mikolas, Pavol (VerfasserIn) , Kather, Jakob Nikolas (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 05 November 2024
In: The British journal of psychiatry
Year: 2024, Jahrgang: 225, Heft: 6, Pages: 532-537
ISSN:1472-1465
DOI:10.1192/bjp.2024.134
Online-Zugang:Verlag, kostenfrei, Volltext: https://doi.org/10.1192/bjp.2024.134
Verlag, kostenfrei, Volltext: http://www.cambridge.org/core/journals/the-british-journal-of-psychiatry/article/detection-of-suicidality-from-medical-text-using-privacypreserving-large-language-models/75E6B08AECDF68443C2594F421805FD9#
Volltext
Verfasserangaben:Isabella Catharina Wiest, Falk Gerrik Verhees, Dyke Ferber, Jiefu Zhu, Michael Bauer, Ute Lewitzka, Andrea Pfennig, Pavol Mikolas and Jakob Nikolas Kather

MARC

LEADER 00000caa a2200000 c 4500
001 1923811673
003 DE-627
005 20250717012041.0
007 cr uuu---uuuuu
008 250429s2024 xx |||||o 00| ||eng c
024 7 |a 10.1192/bjp.2024.134  |2 doi 
035 |a (DE-627)1923811673 
035 |a (DE-599)KXP1923811673 
035 |a (OCoLC)1528045038 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 11  |2 sdnb 
100 1 |a Wiest, Isabella  |d 1992-  |e VerfasserIn  |0 (DE-588)1198882956  |0 (DE-627)168103638X  |4 aut 
245 1 0 |a Detection of suicidality from medical text using privacy-preserving large language models  |b feature  |c Isabella Catharina Wiest, Falk Gerrik Verhees, Dyke Ferber, Jiefu Zhu, Michael Bauer, Ute Lewitzka, Andrea Pfennig, Pavol Mikolas and Jakob Nikolas Kather 
264 1 |c 05 November 2024 
300 |b Illustrationen, Diagramme 
300 |a 6 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 29.04.2025 
520 |a BackgroundAttempts to use artificial intelligence (AI) in psychiatric disorders show moderate success, highlighting the potential of incorporating information from clinical assessments to improve the models. This study focuses on using large language models (LLMs) to detect suicide risk from medical text in psychiatric care.AimsTo extract information about suicidality status from the admission notes in electronic health records (EHRs) using privacy-sensitive, locally hosted LLMs, specifically evaluating the efficacy of Llama-2 models.MethodWe compared the performance of several variants of the open source LLM Llama-2 in extracting suicidality status from 100 psychiatric reports against a ground truth defined by human experts, assessing accuracy, sensitivity, specificity and F1 score across different prompting strategies.ResultsA German fine-tuned Llama-2 model showed the highest accuracy (87.5%), sensitivity (83.0%) and specificity (91.8%) in identifying suicidality, with significant improvements in sensitivity and specificity across various prompt designs.ConclusionsThe study demonstrates the capability of LLMs, particularly Llama-2, in accurately extracting information on suicidality from psychiatric records while preserving data privacy. This suggests their application in surveillance systems for psychiatric emergencies and improving the clinical management of suicidality by improving systematic quality control and research. 
650 4 |a electronic health records 
650 4 |a Large language models 
650 4 |a natural language processing 
650 4 |a psychiatric disorder detection 
650 4 |a suicidality 
700 1 |a Verhees, Falk Gerrik  |d 1993-  |e VerfasserIn  |0 (DE-588)1368412149  |0 (DE-627)1927974054  |4 aut 
700 1 |a Ferber, Dyke  |e VerfasserIn  |0 (DE-588)1171467079  |0 (DE-627)1040545629  |0 (DE-576)513746056  |4 aut 
700 1 |a Zhu, Jiefu  |e VerfasserIn  |4 aut 
700 1 |a Bauer, Michael  |e VerfasserIn  |4 aut 
700 1 |a Lewitzka, Ute  |e VerfasserIn  |0 (DE-588)1279114762  |0 (DE-627)183232138X  |4 aut 
700 1 |a Pfennig, Andrea  |d 1971-  |e VerfasserIn  |0 (DE-588)123870941  |0 (DE-627)706457633  |0 (DE-576)293919364  |4 aut 
700 1 |a Mikolas, Pavol  |e VerfasserIn  |4 aut 
700 1 |a Kather, Jakob Nikolas  |d 1989-  |e VerfasserIn  |0 (DE-588)1064064914  |0 (DE-627)812897587  |0 (DE-576)423589091  |4 aut 
773 0 8 |i Enthalten in  |t The British journal of psychiatry  |d Cambridge : Cambridge University Press, 1963  |g 225(2024), 6, Seite 532-537  |h Online-Ressource  |w (DE-627)320240754  |w (DE-600)2021500-9  |w (DE-576)09388849X  |x 1472-1465  |7 nnas  |a Detection of suicidality from medical text using privacy-preserving large language models feature 
773 1 8 |g volume:225  |g year:2024  |g number:6  |g pages:532-537  |g extent:6  |a Detection of suicidality from medical text using privacy-preserving large language models feature 
856 4 0 |u https://doi.org/10.1192/bjp.2024.134  |x Verlag  |x Resolving-System  |z kostenfrei  |3 Volltext 
856 4 0 |u http://www.cambridge.org/core/journals/the-british-journal-of-psychiatry/article/detection-of-suicidality-from-medical-text-using-privacypreserving-large-language-models/75E6B08AECDF68443C2594F421805FD9#  |x Verlag  |z kostenfrei  |3 Volltext 
951 |a AR 
992 |a 20250429 
993 |a Article 
994 |a 2024 
998 |g 1064064914  |a Kather, Jakob Nikolas  |m 1064064914:Kather, Jakob Nikolas  |d 910000  |d 910100  |e 910000PK1064064914  |e 910100PK1064064914  |k 0/910000/  |k 1/910000/910100/  |p 9  |y j 
998 |g 1171467079  |a Ferber, Dyke  |m 1171467079:Ferber, Dyke  |d 910000  |d 910100  |e 910000PF1171467079  |e 910100PF1171467079  |k 0/910000/  |k 1/910000/910100/  |p 3 
998 |g 1198882956  |a Wiest, Isabella  |m 1198882956:Wiest, Isabella  |d 60000  |d 61100  |e 60000PW1198882956  |e 61100PW1198882956  |k 0/60000/  |k 1/60000/61100/  |p 1  |x j 
999 |a KXP-PPN1923811673  |e 4715037033 
BIB |a Y 
SER |a journal 
JSO |a {"origin":[{"dateIssuedKey":"2024","dateIssuedDisp":"05 November 2024"}],"person":[{"display":"Wiest, Isabella","family":"Wiest","given":"Isabella","role":"aut"},{"display":"Verhees, Falk Gerrik","role":"aut","given":"Falk Gerrik","family":"Verhees"},{"display":"Ferber, Dyke","given":"Dyke","role":"aut","family":"Ferber"},{"role":"aut","given":"Jiefu","family":"Zhu","display":"Zhu, Jiefu"},{"display":"Bauer, Michael","family":"Bauer","given":"Michael","role":"aut"},{"display":"Lewitzka, Ute","family":"Lewitzka","given":"Ute","role":"aut"},{"family":"Pfennig","given":"Andrea","role":"aut","display":"Pfennig, Andrea"},{"display":"Mikolas, Pavol","given":"Pavol","role":"aut","family":"Mikolas"},{"display":"Kather, Jakob Nikolas","family":"Kather","role":"aut","given":"Jakob Nikolas"}],"relHost":[{"part":{"year":"2024","volume":"225","pages":"532-537","issue":"6","text":"225(2024), 6, Seite 532-537","extent":"6"},"id":{"eki":["320240754"],"issn":["1472-1465"],"zdb":["2021500-9"]},"titleAlt":[{"title":"BJPsych"},{"title":"BJP"}],"pubHistory":["109.1963 -"],"name":{"displayForm":["publ. by the Royal College of Psychiatrists"]},"corporate":[{"display":"Royal College of Psychiatrists","role":"isb"}],"disp":"Detection of suicidality from medical text using privacy-preserving large language models featureThe British journal of psychiatry","recId":"320240754","physDesc":[{"extent":"Online-Ressource"}],"title":[{"title_sort":"British journal of psychiatry","title":"The British journal of psychiatry","subtitle":"BJPsych"}],"note":["Gesehen am 06.06.2018"],"language":["eng"],"type":{"bibl":"periodical","media":"Online-Ressource"},"origin":[{"publisher":"Cambridge University Press ; The Royal College of Psychiatrists","publisherPlace":"Cambridge ; London","dateIssuedKey":"1963","dateIssuedDisp":"1963-"}]}],"title":[{"subtitle":"feature","title":"Detection of suicidality from medical text using privacy-preserving large language models","title_sort":"Detection of suicidality from medical text using privacy-preserving large language models"}],"language":["eng"],"type":{"media":"Online-Ressource","bibl":"article-journal"},"note":["Gesehen am 29.04.2025"],"recId":"1923811673","physDesc":[{"noteIll":"Illustrationen, Diagramme","extent":"6 S."}],"name":{"displayForm":["Isabella Catharina Wiest, Falk Gerrik Verhees, Dyke Ferber, Jiefu Zhu, Michael Bauer, Ute Lewitzka, Andrea Pfennig, Pavol Mikolas and Jakob Nikolas Kather"]},"id":{"doi":["10.1192/bjp.2024.134"],"eki":["1923811673"]}} 
SRT |a WIESTISABEDETECTIONO0520