Building damage assessment in natural disasters: a trans- and interdisciplinary approach combining domain knowledge, 3D machine learning, and crowdsourcing

Recent natural disasters have claimed many lives. Reliable damage predictions and timely assessments are essential for effective rescue operation planning and efficient allocation of limited resources. Currently, experts in the field perform damage assessment manually, which is resource- and time-in...

Full description

Saved in:
Bibliographic Details
Main Authors: Eberl, Julia (Author) , Zahs, Vivien (Author) , Klonner, Carolin (Author) , Höfle, Bernhard (Author) , Stempniewski, Lothar (Author) , Stark, Alexander (Author)
Format: Article (Journal)
Language:English
Published: April 2025
In: Progress in disaster science
Year: 2025, Volume: 26, Pages: 1-10
ISSN:2590-0617
DOI:10.1016/j.pdisas.2025.100427
Online Access:Resolving-System, kostenfrei, Volltext: https://doi.org/10.1016/j.pdisas.2025.100427
Verlag, kostenfrei, Volltext: https://www.sciencedirect.com/science/article/pii/S2590061725000249?
Get full text
Author Notes:Julia Kohns, Vivien Zahs, Carolin Klonner, Bernhard Höfle, Lothar Stempniewski, Alexander Stark

MARC

LEADER 00000caa a2200000 c 4500
001 1924634287
003 DE-627
005 20250717012610.0
007 cr uuu---uuuuu
008 250505s2025 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.pdisas.2025.100427  |2 doi 
035 |a (DE-627)1924634287 
035 |a (DE-599)KXP1924634287 
035 |a (OCoLC)1528044348 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 61  |2 sdnb 
100 1 |a Eberl, Julia  |e VerfasserIn  |0 (DE-588)1326477692  |0 (DE-627)1886100713  |4 aut 
245 1 0 |a Building damage assessment in natural disasters  |b a trans- and interdisciplinary approach combining domain knowledge, 3D machine learning, and crowdsourcing  |c Julia Kohns, Vivien Zahs, Carolin Klonner, Bernhard Höfle, Lothar Stempniewski, Alexander Stark 
264 1 |c April 2025 
300 |a 10 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 05.05.2025 
520 |a Recent natural disasters have claimed many lives. Reliable damage predictions and timely assessments are essential for effective rescue operation planning and efficient allocation of limited resources. Currently, experts in the field perform damage assessment manually, which is resource- and time-intensive. To address this issue, we propose a general trans- and interdisciplinary concept that combines the strengths of domain knowledge, automated computational methods, and crowdsourcing. The objective is to provide relevant and timely damage information after a natural disaster. The specific implementation presented for the earthquake damage use case includes (1) the development of a set of novel, innovative methods, (2) their combination to obtain timely and reliable damage information, (3) fully defined interfaces between all components to ensure an automated data flow, (4) implementation as a fully open-source framework, and (5) the participation of end users in the development of the framework from the beginning, contributing their expertise. Compared to other existing individual solutions, our interdisciplinary implementation has shown to provide fast and accurate information in disaster situations, aiding the management of consequences and saving lives. We consider the implementation transferable to various types of natural hazards due to its open-source realisation and the flexibility of its modules and interfaces. 
700 1 |a Zahs, Vivien  |e VerfasserIn  |0 (DE-588)1227935412  |0 (DE-627)1749138905  |4 aut 
700 1 |a Klonner, Carolin  |d 1986-  |e VerfasserIn  |0 (DE-588)1061017257  |0 (DE-627)803556551  |0 (DE-576)417133057  |4 aut 
700 1 |a Höfle, Bernhard  |e VerfasserIn  |0 (DE-588)1019895403  |0 (DE-627)691049297  |0 (DE-576)358986753  |4 aut 
700 1 |a Stempniewski, Lothar  |e VerfasserIn  |0 (DE-588)140814396  |0 (DE-627)622580833  |0 (DE-576)167316656  |4 aut 
700 1 |a Stark, Alexander  |e VerfasserIn  |0 (DE-588)1330583078  |0 (DE-627)1889736694  |4 aut 
773 0 8 |i Enthalten in  |t Progress in disaster science  |d Amsterdam : Elsevier, 2019  |g 26(2025), Artikel-ID 100427, Seite 1-10  |h Online-Ressource  |w (DE-627)1666552429  |w (DE-600)2973770-9  |x 2590-0617  |7 nnas  |a Building damage assessment in natural disasters a trans- and interdisciplinary approach combining domain knowledge, 3D machine learning, and crowdsourcing 
773 1 8 |g volume:26  |g year:2025  |g elocationid:100427  |g pages:1-10  |g extent:10  |a Building damage assessment in natural disasters a trans- and interdisciplinary approach combining domain knowledge, 3D machine learning, and crowdsourcing 
856 4 0 |u https://doi.org/10.1016/j.pdisas.2025.100427  |x Resolving-System  |x Verlag  |z kostenfrei  |3 Volltext 
856 4 0 |u https://www.sciencedirect.com/science/article/pii/S2590061725000249?  |x Verlag  |z kostenfrei  |3 Volltext 
951 |a AR 
992 |a 20250505 
993 |a Article 
994 |a 2025 
998 |g 1019895403  |a Höfle, Bernhard  |m 1019895403:Höfle, Bernhard  |d 120000  |d 120700  |e 120000PH1019895403  |e 120700PH1019895403  |k 0/120000/  |k 1/120000/120700/  |p 4 
998 |g 1061017257  |a Klonner, Carolin  |m 1061017257:Klonner, Carolin  |p 3 
998 |g 1227935412  |a Zahs, Vivien  |m 1227935412:Zahs, Vivien  |p 2 
999 |a KXP-PPN1924634287  |e 4720003184 
BIB |a Y 
SER |a journal 
JSO |a {"note":["Gesehen am 05.05.2025"],"recId":"1924634287","title":[{"subtitle":"a trans- and interdisciplinary approach combining domain knowledge, 3D machine learning, and crowdsourcing","title_sort":"Building damage assessment in natural disasters","title":"Building damage assessment in natural disasters"}],"id":{"doi":["10.1016/j.pdisas.2025.100427"],"eki":["1924634287"]},"relHost":[{"physDesc":[{"extent":"Online-Ressource"}],"part":{"text":"26(2025), Artikel-ID 100427, Seite 1-10","volume":"26","extent":"10","year":"2025","pages":"1-10"},"origin":[{"publisher":"Elsevier","dateIssuedDisp":"[2019]-","publisherPlace":"Amsterdam"}],"type":{"bibl":"periodical","media":"Online-Ressource"},"language":["eng"],"pubHistory":["Volume 1 (May 2019)-"],"disp":"Building damage assessment in natural disasters a trans- and interdisciplinary approach combining domain knowledge, 3D machine learning, and crowdsourcingProgress in disaster science","recId":"1666552429","id":{"issn":["2590-0617"],"zdb":["2973770-9"],"eki":["1666552429"]},"title":[{"title_sort":"Progress in disaster science","title":"Progress in disaster science"}]}],"person":[{"roleDisplay":"VerfasserIn","family":"Eberl","given":"Julia","display":"Eberl, Julia","role":"aut"},{"given":"Vivien","display":"Zahs, Vivien","role":"aut","family":"Zahs","roleDisplay":"VerfasserIn"},{"role":"aut","display":"Klonner, Carolin","given":"Carolin","roleDisplay":"VerfasserIn","family":"Klonner"},{"given":"Bernhard","role":"aut","display":"Höfle, Bernhard","family":"Höfle","roleDisplay":"VerfasserIn"},{"roleDisplay":"VerfasserIn","family":"Stempniewski","display":"Stempniewski, Lothar","role":"aut","given":"Lothar"},{"given":"Alexander","display":"Stark, Alexander","role":"aut","family":"Stark","roleDisplay":"VerfasserIn"}],"physDesc":[{"extent":"10 S."}],"name":{"displayForm":["Julia Kohns, Vivien Zahs, Carolin Klonner, Bernhard Höfle, Lothar Stempniewski, Alexander Stark"]},"type":{"media":"Online-Ressource","bibl":"article-journal"},"origin":[{"dateIssuedKey":"2025","dateIssuedDisp":"April 2025"}],"language":["eng"]} 
SRT |a EBERLJULIABUILDINGDA2025