Predictors for improvement in personality functioning during outpatient psychotherapy: a machine learning approach within a psychodynamic psychotherapy sample

BackgroundSince its introduction in the diagnostic manuals DSM-5 and ICD-11, the construct of personality functioning has gained increasing attention. However, it remains unclear which factors might predict improvement in personality functioning.MethodsWe examined a sample of 648 completed psychodyn...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Dönnhoff, Ivo (VerfasserIn) , Kindermann, David (VerfasserIn) , Stahl-Toyota, Sophia (VerfasserIn) , Nowak, Jonathan (VerfasserIn) , Orth, Maximilian (VerfasserIn) , Friederich, Hans-Christoph (VerfasserIn) , Nikendei, Christoph (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 15 November 2024
In: European psychiatry
Year: 2024, Jahrgang: 67, Heft: 1, Pages: 1-10
ISSN:1778-3585
DOI:10.1192/j.eurpsy.2024.1780
Online-Zugang:Verlag, kostenfrei, Volltext: https://doi.org/10.1192/j.eurpsy.2024.1780
Verlag, kostenfrei, Volltext: https://www.cambridge.org/core/journals/european-psychiatry/article/predictors-for-improvement-in-personality-functioning-during-outpatient-psychotherapy-a-machine-learning-approach-within-a-psychodynamic-psychotherapy-sample/C9366E0983CCE15A8B11959C278E0AC0#
Volltext
Verfasserangaben:I. Dönnhoff, D. Kindermann, S. Stahl-Toyota, J. Nowak, M. Orth, H.-C. Friederich, and C. Nikendei

MARC

LEADER 00000caa a2200000 c 4500
001 1925341984
003 DE-627
005 20250717013302.0
007 cr uuu---uuuuu
008 250512s2024 xx |||||o 00| ||eng c
024 7 |a 10.1192/j.eurpsy.2024.1780  |2 doi 
035 |a (DE-627)1925341984 
035 |a (DE-599)KXP1925341984 
035 |a (OCoLC)1528045149 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 11  |2 sdnb 
100 1 |a Dönnhoff, Ivo  |d 1991-  |e VerfasserIn  |0 (DE-588)1275342892  |0 (DE-627)1826823948  |4 aut 
245 1 0 |a Predictors for improvement in personality functioning during outpatient psychotherapy  |b a machine learning approach within a psychodynamic psychotherapy sample  |c I. Dönnhoff, D. Kindermann, S. Stahl-Toyota, J. Nowak, M. Orth, H.-C. Friederich, and C. Nikendei 
264 1 |c 15 November 2024 
300 |b Illustrationen 
300 |a 10 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 12.05.2025 
520 |a BackgroundSince its introduction in the diagnostic manuals DSM-5 and ICD-11, the construct of personality functioning has gained increasing attention. However, it remains unclear which factors might predict improvement in personality functioning.MethodsWe examined a sample of 648 completed psychodynamic psychotherapies conducted by 172 therapists at the Heidelberg Institute for Psychotherapy. A machine learning approach was used to filter for variables that are relevant for the prediction of the improvement of personality functioning from a broad data set of variables collected at the beginning of each psychodynamic psychotherapy.ResultsOn average, we found an improvement of 0.24 (SD = 0.48) in the OPD-SQ. This corresponds to a medium effect in the improvement of personality functioning. Patients with initially high impairment experienced particularly large improvements. Overall, we found a large number of variables that proved to be predictive for the improvement of personality functioning. Limitations in social activity due to physical and emotional problems proved to be one of the most important predictors of improvement. Most of the effect sizes were small.ConclusionsOverall, the improvement in personality functioning during psychotherapy is determined more by the sum of a large number of small effects than by individual variables. In particular, variables that capture social areas of life proved to be robust predictors. 
650 4 |a machine learning 
650 4 |a missing data analysis in machine learning 
650 4 |a personality functioning 
650 4 |a psychotherapy success 
700 1 |a Kindermann, David  |d 1988-  |e VerfasserIn  |0 (DE-588)1076042554  |0 (DE-627)834209535  |0 (DE-576)444816569  |4 aut 
700 1 |a Stahl-Toyota, Sophia  |e VerfasserIn  |0 (DE-588)1294099566  |0 (DE-627)1851056106  |4 aut 
700 1 |a Nowak, Jonathan  |e VerfasserIn  |0 (DE-588)1262114446  |0 (DE-627)1809655498  |4 aut 
700 1 |a Orth, Maximilian  |d 1995-  |e VerfasserIn  |0 (DE-588)1278921516  |0 (DE-627)1831829738  |4 aut 
700 1 |a Friederich, Hans-Christoph  |d 1971-  |e VerfasserIn  |0 (DE-588)122302524  |0 (DE-627)70585311X  |0 (DE-576)293208417  |4 aut 
700 1 |a Nikendei, Christoph  |d 1971-  |e VerfasserIn  |0 (DE-588)123417023  |0 (DE-627)08254350X  |0 (DE-576)184450977  |4 aut 
773 0 8 |i Enthalten in  |t European psychiatry  |d Cambridge : Cambridge University Press, 1991  |g 67(2024), 1, Artikel-ID e79, Seite 1-10  |h Online-Ressource  |w (DE-627)320445070  |w (DE-600)2005377-0  |w (DE-576)10684606X  |x 1778-3585  |7 nnas  |a Predictors for improvement in personality functioning during outpatient psychotherapy a machine learning approach within a psychodynamic psychotherapy sample 
773 1 8 |g volume:67  |g year:2024  |g number:1  |g elocationid:e79  |g pages:1-10  |g extent:10  |a Predictors for improvement in personality functioning during outpatient psychotherapy a machine learning approach within a psychodynamic psychotherapy sample 
856 4 0 |u https://doi.org/10.1192/j.eurpsy.2024.1780  |x Verlag  |x Resolving-System  |z kostenfrei  |3 Volltext 
856 4 0 |u https://www.cambridge.org/core/journals/european-psychiatry/article/predictors-for-improvement-in-personality-functioning-during-outpatient-psychotherapy-a-machine-learning-approach-within-a-psychodynamic-psychotherapy-sample/C9366E0983CCE15A8B11959C278E0AC0#  |x Verlag  |z kostenfrei  |3 Volltext 
951 |a AR 
992 |a 20250512 
993 |a Article 
994 |a 2024 
998 |g 123417023  |a Nikendei, Christoph  |m 123417023:Nikendei, Christoph  |d 910000  |d 910100  |d 50000  |e 910000PN123417023  |e 910100PN123417023  |e 50000PN123417023  |k 0/910000/  |k 1/910000/910100/  |k 0/50000/  |p 7  |y j 
998 |g 122302524  |a Friederich, Hans-Christoph  |m 122302524:Friederich, Hans-Christoph  |d 910000  |d 910100  |e 910000PF122302524  |e 910100PF122302524  |k 0/910000/  |k 1/910000/910100/  |p 6 
998 |g 1278921516  |a Orth, Maximilian  |m 1278921516:Orth, Maximilian  |d 910000  |d 910100  |e 910000PO1278921516  |e 910100PO1278921516  |k 0/910000/  |k 1/910000/910100/  |p 5 
998 |g 1262114446  |a Nowak, Jonathan  |m 1262114446:Nowak, Jonathan  |d 910000  |d 910100  |e 910000PN1262114446  |e 910100PN1262114446  |k 0/910000/  |k 1/910000/910100/  |p 4 
998 |g 1294099566  |a Stahl-Toyota, Sophia  |m 1294099566:Stahl-Toyota, Sophia  |d 910000  |d 910100  |e 910000PS1294099566  |e 910100PS1294099566  |k 0/910000/  |k 1/910000/910100/  |p 3 
998 |g 1076042554  |a Kindermann, David  |m 1076042554:Kindermann, David  |d 910000  |d 910100  |d 50000  |e 910000PK1076042554  |e 910100PK1076042554  |e 50000PK1076042554  |k 0/910000/  |k 1/910000/910100/  |k 0/50000/  |p 2 
998 |g 1275342892  |a Dönnhoff, Ivo  |m 1275342892:Dönnhoff, Ivo  |d 910000  |d 910100  |e 910000PD1275342892  |e 910100PD1275342892  |k 0/910000/  |k 1/910000/910100/  |p 1  |x j 
999 |a KXP-PPN1925341984  |e 472357882X 
BIB |a Y 
SER |a journal 
JSO |a {"relHost":[{"origin":[{"dateIssuedKey":"1991","publisher":"Cambridge University Press ; Elsevier Science","dateIssuedDisp":"1991-","publisherPlace":"Cambridge ; Amsterdam"}],"id":{"eki":["320445070"],"issn":["1778-3585"],"zdb":["2005377-0"]},"part":{"year":"2024","issue":"1","volume":"67","pages":"1-10","text":"67(2024), 1, Artikel-ID e79, Seite 1-10","extent":"10"},"recId":"320445070","disp":"Predictors for improvement in personality functioning during outpatient psychotherapy a machine learning approach within a psychodynamic psychotherapy sampleEuropean psychiatry","title":[{"title_sort":"European psychiatry","subtitle":"the official journal of the Association of European Psychiatrists (AEP)","title":"European psychiatry"}],"note":["Gesehen am 20.05.2020","Fortsetzung der Druck-Ausgabe"],"type":{"media":"Online-Ressource","bibl":"periodical"},"pubHistory":["Nachgewiesen 6.1991 -"],"physDesc":[{"extent":"Online-Ressource"}],"language":["eng"]}],"note":["Gesehen am 12.05.2025"],"recId":"1925341984","name":{"displayForm":["I. Dönnhoff, D. Kindermann, S. Stahl-Toyota, J. Nowak, M. Orth, H.-C. Friederich, and C. Nikendei"]},"origin":[{"dateIssuedKey":"2024","dateIssuedDisp":"15 November 2024"}],"id":{"eki":["1925341984"],"doi":["10.1192/j.eurpsy.2024.1780"]},"language":["eng"],"physDesc":[{"noteIll":"Illustrationen","extent":"10 S."}],"type":{"bibl":"article-journal","media":"Online-Ressource"},"title":[{"subtitle":"a machine learning approach within a psychodynamic psychotherapy sample","title":"Predictors for improvement in personality functioning during outpatient psychotherapy","title_sort":"Predictors for improvement in personality functioning during outpatient psychotherapy"}],"person":[{"role":"aut","given":"Ivo","family":"Dönnhoff","display":"Dönnhoff, Ivo"},{"display":"Kindermann, David","family":"Kindermann","role":"aut","given":"David"},{"display":"Stahl-Toyota, Sophia","family":"Stahl-Toyota","given":"Sophia","role":"aut"},{"display":"Nowak, Jonathan","family":"Nowak","given":"Jonathan","role":"aut"},{"family":"Orth","role":"aut","given":"Maximilian","display":"Orth, Maximilian"},{"family":"Friederich","given":"Hans-Christoph","role":"aut","display":"Friederich, Hans-Christoph"},{"display":"Nikendei, Christoph","family":"Nikendei","given":"Christoph","role":"aut"}]} 
SRT |a DOENNHOFFIPREDICTORS1520