The fake monster algebra and singular Borcherds products

In this paper we consider several problems in the theory of automorphic products and generalized Kac-Moody algebras proposed by Borcherds in 1995. We show that the denominator of the fake monster algebra defines the unique holomorphic Borcherds product of singular weight on a maximal lattice. We giv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Wang, Haowu (VerfasserIn) , Williams, Brandon (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 2025
In: Advances in mathematics
Year: 2025, Jahrgang: 461, Pages: 1-52
ISSN:1090-2082
DOI:10.1016/j.aim.2024.110083
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1016/j.aim.2024.110083
Verlag, lizenzpflichtig, Volltext: https://www.sciencedirect.com/science/article/pii/S0001870824005991
Volltext
Verfasserangaben:Haowu Wang, Brandon Williams

MARC

LEADER 00000caa a2200000 c 4500
001 1925510778
003 DE-627
005 20250717013602.0
007 cr uuu---uuuuu
008 250513s2025 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.aim.2024.110083  |2 doi 
035 |a (DE-627)1925510778 
035 |a (DE-599)KXP1925510778 
035 |a (OCoLC)1528045305 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Wang, Haowu  |d 1993-  |e VerfasserIn  |0 (DE-588)1365487210  |0 (DE-627)1925511553  |4 aut 
245 1 4 |a The fake monster algebra and singular Borcherds products  |c Haowu Wang, Brandon Williams 
264 1 |c 2025 
300 |a 52 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Online verfügbar: 30 December 2024 
500 |a Gesehen am 13.05.2025 
520 |a In this paper we consider several problems in the theory of automorphic products and generalized Kac-Moody algebras proposed by Borcherds in 1995. We show that the denominator of the fake monster algebra defines the unique holomorphic Borcherds product of singular weight on a maximal lattice. We give a full classification of symmetric holomorphic Borcherds products of singular weight on lattices of prime level. Finally we prove that all twisted denominator identities of the fake monster algebra arise as the Fourier expansions of Borcherds products of singular weight at a certain cusp. The proofs rely on an identification between modular forms for the Weil representation attached to lattices of type U(N)⊕U⊕L and certain tuples of Jacobi forms of level N. 
650 4 |a Borcherds products of singular weight 
650 4 |a Conway's group 
650 4 |a Fake monster algebra 
650 4 |a Jacobi forms 
650 4 |a Leech lattice 
650 4 |a Modular forms for the Weil representation 
650 4 |a Twisted denominator identities 
700 1 |a Williams, Brandon  |e VerfasserIn  |0 (DE-588)1365504948  |0 (DE-627)1925527026  |4 aut 
773 0 8 |i Enthalten in  |t Advances in mathematics  |d Amsterdam [u.a.] : Elsevier, 1961  |g 461(2025), Artikel-ID 110083, Seite 1-52  |h Online-Ressource  |w (DE-627)268759200  |w (DE-600)1472893-X  |w (DE-576)103373292  |x 1090-2082  |7 nnas  |a The fake monster algebra and singular Borcherds products 
773 1 8 |g volume:461  |g year:2025  |g elocationid:110083  |g pages:1-52  |g extent:52  |a The fake monster algebra and singular Borcherds products 
856 4 0 |u https://doi.org/10.1016/j.aim.2024.110083  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u https://www.sciencedirect.com/science/article/pii/S0001870824005991  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20250513 
993 |a Article 
994 |a 2025 
998 |g 1365504948  |a Williams, Brandon  |m 1365504948:Williams, Brandon  |d 110000  |d 110400  |e 110000PW1365504948  |e 110400PW1365504948  |k 0/110000/  |k 1/110000/110400/  |p 2  |y j 
999 |a KXP-PPN1925510778  |e 4724018585 
BIB |a Y 
SER |a journal 
JSO |a {"title":[{"title_sort":"fake monster algebra and singular Borcherds products","title":"The fake monster algebra and singular Borcherds products"}],"person":[{"given":"Haowu","family":"Wang","role":"aut","display":"Wang, Haowu","roleDisplay":"VerfasserIn"},{"family":"Williams","given":"Brandon","display":"Williams, Brandon","roleDisplay":"VerfasserIn","role":"aut"}],"type":{"media":"Online-Ressource","bibl":"article-journal"},"note":["Online verfügbar: 30 December 2024","Gesehen am 13.05.2025"],"language":["eng"],"recId":"1925510778","origin":[{"dateIssuedDisp":"2025","dateIssuedKey":"2025"}],"id":{"eki":["1925510778"],"doi":["10.1016/j.aim.2024.110083"]},"name":{"displayForm":["Haowu Wang, Brandon Williams"]},"physDesc":[{"extent":"52 S."}],"relHost":[{"origin":[{"publisherPlace":"Amsterdam [u.a.] ; New York, NY [u.a.] ; Orlando, Fla. ; Brugge ; San Diego, Calif. [u.a.]","dateIssuedKey":"1961","publisher":"Elsevier ; Academic Press ; Academic Press ; Academic Press ; Acad. Press","dateIssuedDisp":"1961-"}],"id":{"eki":["268759200"],"zdb":["1472893-X"],"issn":["1090-2082"]},"physDesc":[{"extent":"Online-Ressource"}],"title":[{"title_sort":"Advances in mathematics","title":"Advances in mathematics"}],"pubHistory":["1.1961/65(1965) - 231.2012; Vol. 232.2013 -"],"part":{"text":"461(2025), Artikel-ID 110083, Seite 1-52","volume":"461","extent":"52","year":"2025","pages":"1-52"},"type":{"media":"Online-Ressource","bibl":"periodical"},"disp":"The fake monster algebra and singular Borcherds productsAdvances in mathematics","note":["Gesehen am 14.09.2020"],"recId":"268759200","language":["eng"]}]} 
SRT |a WANGHAOWUWFAKEMONSTE2025