Transfer and the spectrum-level Siegel-Sullivan KO-orientation for singular spaces

Integrally oriented normally nonsingular maps between singular spaces have associated transfer homomorphisms on KO-homology at odd primes. We prove that such transfers preserve Siegel-Sullivan orientations, defined when the singular spaces are compact pseudomanifolds satisfying the Witt condition, f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Banagl, Markus (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 2024
In: Journal of topology and analysis
Year: 2024, Pages: 1-37
ISSN:1793-7167
DOI:10.1142/S1793525324500341
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1142/S1793525324500341
Verlag, lizenzpflichtig, Volltext: https://www.worldscientific.com/doi/10.1142/S1793525324500341
Volltext
Verfasserangaben:Markus Banagl
Beschreibung
Zusammenfassung:Integrally oriented normally nonsingular maps between singular spaces have associated transfer homomorphisms on KO-homology at odd primes. We prove that such transfers preserve Siegel-Sullivan orientations, defined when the singular spaces are compact pseudomanifolds satisfying the Witt condition, for example pure-dimensional compact complex algebraic varieties. This holds for bundle transfers associated to block bundles with manifold fibers as well as for Gysin restrictions associated to normally nonsingular inclusions. Our method is based on constructing a lift of the Siegel-Sullivan orientation to a morphism of highly structured ring spectra which factors through L-theory.
Beschreibung:Gesehen am 15.05.2025
Beschreibung:Online Resource
ISSN:1793-7167
DOI:10.1142/S1793525324500341