Automated kidney stone composition analysis with photon-counting detector CT, a performance study: a phantom study

Background - For treatment of urolithiasis, the stone composition is of particular interest, as uric acid (UA) stones can be treated by chemolitholysis. In this ex vivo study, we employed an advanced composition analysis approach for urolithiasis utilizing spectral data obtained from a photon-counti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Dillinger, Daniel (VerfasserIn) , Waldeck, Stephan (VerfasserIn) , Overhoff, Daniel (VerfasserIn) , Faby, Sebastian (VerfasserIn) , Jürgens, Markus (VerfasserIn) , Schmidt, Bernhard (VerfasserIn) , Hesse, Albrecht (VerfasserIn) , Schoch, Justine (VerfasserIn) , Schmelz, Hans (VerfasserIn) , Stoll, Rico (VerfasserIn) , Nestler, Tim (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: April 2025
In: Academic radiology
Year: 2025, Jahrgang: 32, Heft: 4, Pages: 2005-2012
ISSN:1878-4046
DOI:10.1016/j.acra.2024.10.045
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1016/j.acra.2024.10.045
Verlag, lizenzpflichtig, Volltext: https://www.sciencedirect.com/science/article/pii/S1076633224008328
Volltext
Verfasserangaben:Daniel Dillinger, Stephan Waldeck, Daniel Overhoff, Sebastian Faby, Markus Jürgens, Bernhard Schmidt, Albrecht Hesse, Justine Schoch, Hans Schmelz, Rico Stoll, Tim Nestler

MARC

LEADER 00000caa a2200000 c 4500
001 1927580781
003 DE-627
005 20250913141610.0
007 cr uuu---uuuuu
008 250605s2025 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.acra.2024.10.045  |2 doi 
035 |a (DE-627)1927580781 
035 |a (DE-599)KXP1927580781 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Dillinger, Daniel  |d 1984-  |e VerfasserIn  |0 (DE-588)117783877X  |0 (DE-627)1048948404  |0 (DE-576)517585731  |4 aut 
245 1 0 |a Automated kidney stone composition analysis with photon-counting detector CT, a performance study  |b a phantom study  |c Daniel Dillinger, Stephan Waldeck, Daniel Overhoff, Sebastian Faby, Markus Jürgens, Bernhard Schmidt, Albrecht Hesse, Justine Schoch, Hans Schmelz, Rico Stoll, Tim Nestler 
264 1 |c April 2025 
300 |b Diagramme 
300 |a 8 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Online veröffentlicht: 15. November 2024, Artikelversion: 8. April 2025 
500 |a Gesehen am 05.06.2025 
520 |a Background - For treatment of urolithiasis, the stone composition is of particular interest, as uric acid (UA) stones can be treated by chemolitholysis. In this ex vivo study, we employed an advanced composition analysis approach for urolithiasis utilizing spectral data obtained from a photon-counting detector CT (PCDCT) to differentiate UA and non-UA stones. Our primary objective was to assess the accuracy of this analysis method. - Methods - A total of 148 urinary stones with a known composition that was measured by the standard reference method infrared spectroscopy (reference) were placed in an abdomen phantom and scanned in the PCDCT. Our objectives were to assess the stone detection rates of PCDCT and the accuracy of the prediction of the stone composition in UA vs non-UA compared to the reference. - Results - Automated detection recognized 86.5% of all stones, with best detection rate for stones larger > 5 mm in diameter (95.4%, 88.8% for stones larger than 3 mm, 94.7% for stones larger than 4 mm). Depending on the volume, we found a recognition rate of 92.8% for stones larger than 20 mm3 and 94.0% for stones with more than 30 mm3. Prediction of UA composition showed an overall sensitivity and a positive predictive value of 66.7% and a specificity and negative predictive value of 94.5%. Best diagnostic values volume wise were found by only including stones with a larger volume than 30 mm3, there we found a sensitivity of 91.7%, and a specificity of 92.4%. Sensitivity in dependance of the largest diameter was best for stones larger than 5 mm (85.7%), but specificity decreased with increasing diameter (to 91.3%). - Conclusion - Automated urinary stone composition analysis with PCDCT showed a good automated detection rate of 86.5% up to 95.4% depending on stone diameter. The differentiation between non-UA and UA stones is performed with an NPV of 94.5% and a PPV of 66.7%. The prediction probability of non-UA stones was very good. This means the automatic detection and differentiation algorithm can identify the patients which will not profit from chemolitholysis. 
650 4 |a Automated composition analysis 
650 4 |a Computer tomography 
650 4 |a Kidney stone 
650 4 |a Photon-counting CT 
650 4 |a Urolithiasis 
700 1 |a Waldeck, Stephan  |e VerfasserIn  |4 aut 
700 1 |a Overhoff, Daniel  |d 1984-  |e VerfasserIn  |0 (DE-588)1098192257  |0 (DE-627)85747944X  |0 (DE-576)469013397  |4 aut 
700 1 |a Faby, Sebastian  |e VerfasserIn  |4 aut 
700 1 |a Jürgens, Markus  |e VerfasserIn  |4 aut 
700 1 |a Schmidt, Bernhard  |e VerfasserIn  |4 aut 
700 1 |a Hesse, Albrecht  |e VerfasserIn  |4 aut 
700 1 |a Schoch, Justine  |e VerfasserIn  |4 aut 
700 1 |a Schmelz, Hans  |e VerfasserIn  |4 aut 
700 1 |a Stoll, Rico  |e VerfasserIn  |4 aut 
700 1 |a Nestler, Tim  |e VerfasserIn  |4 aut 
773 0 8 |i Enthalten in  |t Academic radiology  |d Philadelphia, PA [u.a.] : Elsevier, 1994  |g 32(2025), 4 vom: Apr., Seite 2005-2012  |h Online-Ressource  |w (DE-627)331018667  |w (DE-600)2050425-1  |w (DE-576)271497602  |x 1878-4046  |7 nnas  |a Automated kidney stone composition analysis with photon-counting detector CT, a performance study a phantom study 
773 1 8 |g volume:32  |g year:2025  |g number:4  |g month:04  |g pages:2005-2012  |g extent:8  |a Automated kidney stone composition analysis with photon-counting detector CT, a performance study a phantom study 
856 4 0 |u https://doi.org/10.1016/j.acra.2024.10.045  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u https://www.sciencedirect.com/science/article/pii/S1076633224008328  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20250605 
993 |a Article 
994 |a 2025 
998 |g 1098192257  |a Overhoff, Daniel  |m 1098192257:Overhoff, Daniel  |d 60000  |d 62900  |e 60000PO1098192257  |e 62900PO1098192257  |k 0/60000/  |k 1/60000/62900/  |p 3 
999 |a KXP-PPN1927580781  |e 4731305446 
BIB |a Y 
SER |a journal 
JSO |a {"origin":[{"dateIssuedKey":"2025","dateIssuedDisp":"April 2025"}],"language":["eng"],"note":["Online veröffentlicht: 15. November 2024, Artikelversion: 8. April 2025","Gesehen am 05.06.2025"],"relHost":[{"id":{"issn":["1878-4046"],"eki":["331018667"],"zdb":["2050425-1"]},"recId":"331018667","pubHistory":["1.1994 -"],"origin":[{"dateIssuedKey":"1994","dateIssuedDisp":"1994-","publisherPlace":"Philadelphia, PA [u.a.] ; Oak Brook, Ill.","publisher":"Elsevier ; Assoc. of University Radiologists"}],"type":{"media":"Online-Ressource","bibl":"periodical"},"physDesc":[{"extent":"Online-Ressource"}],"part":{"volume":"32","extent":"8","text":"32(2025), 4 vom: Apr., Seite 2005-2012","year":"2025","pages":"2005-2012","issue":"4"},"note":["Gesehen am 18.04.17"],"language":["eng"],"disp":"Automated kidney stone composition analysis with photon-counting detector CT, a performance study a phantom studyAcademic radiology","title":[{"subtitle":"official journal of the Association of University Radiologists, the Society of Chairs of Academic Radiology Departments, the Association of Program Directors in Radiology, the American Alliance of Academic Chief Residents in Radiology, the Alliance of Medical Student Educators in Radiology, the Radiology Research Alliance, the Radiology Alliance for Health Services Research, and the Medical Image Computing and Computer-Assisted Intervention Society","title":"Academic radiology","title_sort":"Academic radiology"}]}],"physDesc":[{"extent":"8 S.","noteIll":"Diagramme"}],"name":{"displayForm":["Daniel Dillinger, Stephan Waldeck, Daniel Overhoff, Sebastian Faby, Markus Jürgens, Bernhard Schmidt, Albrecht Hesse, Justine Schoch, Hans Schmelz, Rico Stoll, Tim Nestler"]},"recId":"1927580781","id":{"doi":["10.1016/j.acra.2024.10.045"],"eki":["1927580781"]},"title":[{"title_sort":"Automated kidney stone composition analysis with photon-counting detector CT, a performance study","title":"Automated kidney stone composition analysis with photon-counting detector CT, a performance study","subtitle":"a phantom study"}],"person":[{"role":"aut","given":"Daniel","roleDisplay":"VerfasserIn","display":"Dillinger, Daniel","family":"Dillinger"},{"roleDisplay":"VerfasserIn","given":"Stephan","display":"Waldeck, Stephan","family":"Waldeck","role":"aut"},{"role":"aut","family":"Overhoff","roleDisplay":"VerfasserIn","display":"Overhoff, Daniel","given":"Daniel"},{"role":"aut","family":"Faby","roleDisplay":"VerfasserIn","given":"Sebastian","display":"Faby, Sebastian"},{"family":"Jürgens","given":"Markus","roleDisplay":"VerfasserIn","display":"Jürgens, Markus","role":"aut"},{"family":"Schmidt","roleDisplay":"VerfasserIn","display":"Schmidt, Bernhard","given":"Bernhard","role":"aut"},{"family":"Hesse","given":"Albrecht","roleDisplay":"VerfasserIn","display":"Hesse, Albrecht","role":"aut"},{"role":"aut","family":"Schoch","roleDisplay":"VerfasserIn","given":"Justine","display":"Schoch, Justine"},{"role":"aut","family":"Schmelz","roleDisplay":"VerfasserIn","given":"Hans","display":"Schmelz, Hans"},{"role":"aut","family":"Stoll","given":"Rico","roleDisplay":"VerfasserIn","display":"Stoll, Rico"},{"role":"aut","roleDisplay":"VerfasserIn","display":"Nestler, Tim","given":"Tim","family":"Nestler"}],"type":{"bibl":"article-journal","media":"Online-Ressource"}} 
SRT |a DILLINGERDAUTOMATEDK2025