Predicting control of cardiovascular disease risk factors in South Asia using machine learning

A substantial share of patients at risk of developing cardiovascular disease (CVD) fail to achieve control of CVD risk factors, but clinicians lack a structured approach to identify these patients. We applied machine learning to longitudinal data from two completed randomized controlled trials among...

Full description

Saved in:
Bibliographic Details
Main Authors: Reuter, Anna (Author) , Ali, Mohammed K. (Author) , Mohan, Viswanathan (Author) , Chwastiak, Lydia (Author) , Singh, Kavita (Author) , Narayan, K. M. Venkat (Author) , Prabhakaran, Dorairaj (Author) , Tandon, Nikhil (Author) , Sudharsanan, Nikkil (Author)
Format: Article (Journal)
Language:English
Published: 2024
In: npj digital medicine
Year: 2024, Volume: 7, Pages: 1-10
ISSN:2398-6352
DOI:10.1038/s41746-024-01353-9
Online Access:Verlag, kostenfrei, Volltext: https://doi.org/10.1038/s41746-024-01353-9
Verlag, kostenfrei, Volltext: https://www.nature.com/articles/s41746-024-01353-9
Get full text
Author Notes:Anna Reuter, Mohammed K. Ali, Viswanathan Mohan, Lydia Chwastiak, Kavita Singh, K.M. Venkat Narayan, Dorairaj Prabhakaran, Nikhil Tandon & Nikkil Sudharsanan

MARC

LEADER 00000naa a2200000 c 4500
001 1927788692
003 DE-627
005 20250606114218.0
007 cr uuu---uuuuu
008 250606s2024 xx |||||o 00| ||eng c
024 7 |a 10.1038/s41746-024-01353-9  |2 doi 
035 |a (DE-627)1927788692 
035 |a (DE-599)KXP1927788692 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Reuter, Anna  |e VerfasserIn  |0 (DE-588)115481758X  |0 (DE-627)1016185480  |0 (DE-576)501254390  |4 aut 
245 1 0 |a Predicting control of cardiovascular disease risk factors in South Asia using machine learning  |c Anna Reuter, Mohammed K. Ali, Viswanathan Mohan, Lydia Chwastiak, Kavita Singh, K.M. Venkat Narayan, Dorairaj Prabhakaran, Nikhil Tandon & Nikkil Sudharsanan 
264 1 |c 2024 
300 |b Illustrationen 
300 |a 10 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Veröffentlicht: 10. Dezember 2024 
500 |a Gesehen am 06.06.2025 
520 |a A substantial share of patients at risk of developing cardiovascular disease (CVD) fail to achieve control of CVD risk factors, but clinicians lack a structured approach to identify these patients. We applied machine learning to longitudinal data from two completed randomized controlled trials among 1502 individuals with diabetes in urban India and Pakistan. Using commonly available clinical data, we predict each individual’s risk of failing to achieve CVD risk factor control goals or meaningful improvements in risk factors at one year after baseline. When classifying those in the top quartile of predicted risk scores as at risk of failing to achieve goals or meaningful improvements, the precision for not achieving goals was 73% for HbA1c, 30% for SBP, and 24% for LDL, and for not achieving meaningful improvements 88% for HbA1c, 87% for SBP, and 85% for LDL. Such models could be integrated into routine care and enable efficient and targeted delivery of health resources in resource-constrained settings. 
650 4 |a Cardiovascular diseases 
650 4 |a Health care 
650 4 |a Risk factors 
700 1 |a Ali, Mohammed K.  |e VerfasserIn  |4 aut 
700 1 |a Mohan, Viswanathan  |e VerfasserIn  |4 aut 
700 1 |a Chwastiak, Lydia  |e VerfasserIn  |4 aut 
700 1 |a Singh, Kavita  |e VerfasserIn  |0 (DE-588)1265790469  |0 (DE-627)1814739998  |4 aut 
700 1 |a Narayan, K. M. Venkat  |e VerfasserIn  |4 aut 
700 1 |a Prabhakaran, Dorairaj  |e VerfasserIn  |4 aut 
700 1 |a Tandon, Nikhil  |e VerfasserIn  |4 aut 
700 1 |a Sudharsanan, Nikkil  |e VerfasserIn  |0 (DE-588)1191848108  |0 (DE-627)1670317765  |4 aut 
773 0 8 |i Enthalten in  |t npj digital medicine  |d [Basingstoke] : Macmillan Publishers Limited, 2016  |g 7(2024), Artikel-ID 357, Seite 1-10  |h Online-Ressource  |w (DE-627)1016587104  |w (DE-600)2925182-5  |w (DE-576)501513582  |x 2398-6352  |7 nnas  |a Predicting control of cardiovascular disease risk factors in South Asia using machine learning 
773 1 8 |g volume:7  |g year:2024  |g elocationid:357  |g pages:1-10  |g extent:10  |a Predicting control of cardiovascular disease risk factors in South Asia using machine learning 
856 4 0 |u https://doi.org/10.1038/s41746-024-01353-9  |x Verlag  |x Resolving-System  |z kostenfrei  |3 Volltext 
856 4 0 |u https://www.nature.com/articles/s41746-024-01353-9  |x Verlag  |z kostenfrei  |3 Volltext 
951 |a AR 
992 |a 20250606 
993 |a Article 
994 |a 2024 
998 |g 1191848108  |a Sudharsanan, Nikkil  |m 1191848108:Sudharsanan, Nikkil  |d 910000  |d 912800  |e 910000PS1191848108  |e 912800PS1191848108  |k 0/910000/  |k 1/910000/912800/  |p 9  |y j 
998 |g 1265790469  |a Singh, Kavita  |m 1265790469:Singh, Kavita  |d 910000  |d 912800  |e 910000PS1265790469  |e 912800PS1265790469  |k 0/910000/  |k 1/910000/912800/  |p 5 
999 |a KXP-PPN1927788692  |e 4732022774 
BIB |a Y 
SER |a journal 
JSO |a {"person":[{"display":"Reuter, Anna","family":"Reuter","role":"aut","given":"Anna"},{"role":"aut","given":"Mohammed K.","display":"Ali, Mohammed K.","family":"Ali"},{"display":"Mohan, Viswanathan","family":"Mohan","given":"Viswanathan","role":"aut"},{"role":"aut","given":"Lydia","family":"Chwastiak","display":"Chwastiak, Lydia"},{"display":"Singh, Kavita","family":"Singh","role":"aut","given":"Kavita"},{"display":"Narayan, K. M. Venkat","family":"Narayan","role":"aut","given":"K. M. Venkat"},{"given":"Dorairaj","role":"aut","family":"Prabhakaran","display":"Prabhakaran, Dorairaj"},{"given":"Nikhil","role":"aut","family":"Tandon","display":"Tandon, Nikhil"},{"role":"aut","given":"Nikkil","family":"Sudharsanan","display":"Sudharsanan, Nikkil"}],"language":["eng"],"type":{"bibl":"article-journal","media":"Online-Ressource"},"origin":[{"dateIssuedDisp":"2024","dateIssuedKey":"2024"}],"note":["Veröffentlicht: 10. Dezember 2024","Gesehen am 06.06.2025"],"title":[{"title":"Predicting control of cardiovascular disease risk factors in South Asia using machine learning","title_sort":"Predicting control of cardiovascular disease risk factors in South Asia using machine learning"}],"id":{"doi":["10.1038/s41746-024-01353-9"],"eki":["1927788692"]},"name":{"displayForm":["Anna Reuter, Mohammed K. Ali, Viswanathan Mohan, Lydia Chwastiak, Kavita Singh, K.M. Venkat Narayan, Dorairaj Prabhakaran, Nikhil Tandon & Nikkil Sudharsanan"]},"physDesc":[{"extent":"10 S.","noteIll":"Illustrationen"}],"recId":"1927788692","relHost":[{"part":{"pages":"1-10","year":"2024","text":"7(2024), Artikel-ID 357, Seite 1-10","extent":"10","volume":"7"},"language":["eng"],"type":{"media":"Online-Ressource","bibl":"periodical"},"disp":"Predicting control of cardiovascular disease risk factors in South Asia using machine learningnpj digital medicine","title":[{"title":"npj digital medicine","title_sort":"npj digital medicine"}],"origin":[{"publisherPlace":"[Basingstoke]","dateIssuedDisp":"[2016]-","publisher":"Macmillan Publishers Limited"}],"pubHistory":["2016-"],"note":["Gesehen am 06. September 2019"],"id":{"zdb":["2925182-5"],"issn":["2398-6352"],"eki":["1016587104"]},"recId":"1016587104","physDesc":[{"extent":"Online-Ressource"}]}]} 
SRT |a REUTERANNAPREDICTING2024