An explainable GeoAI approach for the multimodal analysis of urban human dynamics: a case study for the COVID-19 pandemic in Rio de Janeiro

The recent COVID-19 pandemic has underscored the need for effective public health interventions during infectious disease outbreaks. Understanding the spatiotemporal dynamics of urban human behaviour is essential for such responses. Crowd-sourced geo-data can be a valuable data source for this under...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Hanny, David (VerfasserIn) , Arifi, Dorian (VerfasserIn) , Knoblauch, Steffen (VerfasserIn) , Resch, Bernd (VerfasserIn) , Lautenbach, Sven (VerfasserIn) , Zipf, Alexander (VerfasserIn) , de Aragão Rocha, Antonio Augusto (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 03 March 2025
In: Computational urban science
Year: 2025, Jahrgang: 5, Heft: 1, Pages: 1-26
ISSN:2730-6852
DOI:10.1007/s43762-025-00172-2
Online-Zugang:Resolving-System, kostenfrei, Volltext: https://doi.org/10.1007/s43762-025-00172-2
Verlag, kostenfrei, Volltext: https://link.springer.com/article/10.1007/s43762-025-00172-2
Volltext
Verfasserangaben:David Hanny, Dorian Arifi, Steffen Knoblauch, Bernd Resch, Sven Lautenbach, Alexander Zipf and Antonio Augusto de Aragão Rocha

MARC

LEADER 00000caa a2200000 c 4500
001 1927973082
003 DE-627
005 20250710230853.0
007 cr uuu---uuuuu
008 250611s2025 xx |||||o 00| ||eng c
024 7 |a 10.1007/s43762-025-00172-2  |2 doi 
035 |a (DE-627)1927973082 
035 |a (DE-599)KXP1927973082 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 61  |2 sdnb 
100 1 |a Hanny, David  |e VerfasserIn  |0 (DE-588)1368412092  |0 (DE-627)1927973945  |4 aut 
245 1 3 |a An explainable GeoAI approach for the multimodal analysis of urban human dynamics  |b a case study for the COVID-19 pandemic in Rio de Janeiro  |c David Hanny, Dorian Arifi, Steffen Knoblauch, Bernd Resch, Sven Lautenbach, Alexander Zipf and Antonio Augusto de Aragão Rocha 
264 1 |c 03 March 2025 
300 |b Illustrationen 
300 |a 26 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 11.06.2025 
520 |a The recent COVID-19 pandemic has underscored the need for effective public health interventions during infectious disease outbreaks. Understanding the spatiotemporal dynamics of urban human behaviour is essential for such responses. Crowd-sourced geo-data can be a valuable data source for this understanding. However, previous research often struggles with the complexity and heterogeneity of such data, facing challenges in the utilisation of multiple modalities and explainability. To address these challenges, we present a novel approach to identify and rank multimodal time series features derived from mobile phone and geo-social media data based on their association with COVID-19 infection rates in the municipality of Rio de Janeiro. Our analysis spans from April 6, 2020, to August 31, 2021, and integrates 59 time series features. We introduce a feature selection algorithm based on Chatterjee’s Xi measure of dependence to identify relevant features on an Área Programática da Saúde (health area) and city-wide level. We then compare the predictive power of the selected features against those identified by traditional feature selection methods. Additionally, we contextualise this information by correlating dependence scores and model error with 15 socio-demographic variables such as ethnic distribution and social development. Our results show that social media activity related to COVID-19, tourism and leisure activities was associated most strongly with infection rates, indicated by high dependence scores up to 0.88. Mobility data consistently yielded low to intermediate dependence scores, with the maximum being 0.47. Our feature selection approach resulted in better or equivalent model performance when compared to traditional feature selection methods. At the health-area level, local feature selection generally yielded better model performance compared to city-wide feature selection. Finally, we observed that socio-demographic factors such as the proportion of the Indigenous population or social development correlated with the dependence scores of both mobility data and health- or leisure-related semantic topics on social media. Our findings demonstrate the value of integrating localised multimodal features in city-level epidemiological analysis and offer a method for effectively identifying them. In the broader context of GeoAI, our approach provides a framework for identifying and ranking relevant spatiotemporal features, allowing for concrete insights prior to model building, and enabling more transparency when making predictions. 
650 4 |a Data Mining 
650 4 |a Epidemiology 
650 4 |a Feature selection 
650 4 |a GeoAI 
650 4 |a Geoinformatics 
650 4 |a Human Geography 
650 4 |a Mobility 
650 4 |a Social and Cultural Geography 
650 4 |a Social Indicators 
650 4 |a Social media 
650 4 |a Time series analysis 
650 4 |a Urban Sociology 
700 1 |8 1\p  |a Arifi, Dorian  |e VerfasserIn  |0 (DE-588)1368491634  |0 (DE-627)1928067891  |4 aut 
700 1 |a Knoblauch, Steffen  |d 1995-  |e VerfasserIn  |0 (DE-588)1293410837  |0 (DE-627)1850735492  |4 aut 
700 1 |a Resch, Bernd  |e VerfasserIn  |0 (DE-588)1033522686  |0 (DE-627)741355140  |0 (DE-576)381140059  |4 aut 
700 1 |a Lautenbach, Sven  |d 1969-  |e VerfasserIn  |0 (DE-588)131532847  |0 (DE-627)510504264  |0 (DE-576)29856811X  |4 aut 
700 1 |a Zipf, Alexander  |d 1971-  |e VerfasserIn  |0 (DE-588)123246369  |0 (DE-627)082437076  |0 (DE-576)175641056  |4 aut 
700 1 |a de Aragão Rocha, Antonio Augusto  |e VerfasserIn  |4 aut 
773 0 8 |i Enthalten in  |t Computational urban science  |d [Singapore] : Springer Nature, 2021  |g 5(2025), 1, Artikel-ID 13, Seite 1-26  |h Online-Ressource  |w (DE-627)1755847114  |w (DE-600)3061590-2  |x 2730-6852  |7 nnas  |a An explainable GeoAI approach for the multimodal analysis of urban human dynamics a case study for the COVID-19 pandemic in Rio de Janeiro 
773 1 8 |g volume:5  |g year:2025  |g number:1  |g elocationid:13  |g pages:1-26  |g extent:26  |a An explainable GeoAI approach for the multimodal analysis of urban human dynamics a case study for the COVID-19 pandemic in Rio de Janeiro 
856 4 0 |u https://doi.org/10.1007/s43762-025-00172-2  |x Resolving-System  |x Verlag  |z kostenfrei  |3 Volltext 
856 4 0 |u https://link.springer.com/article/10.1007/s43762-025-00172-2  |x Verlag  |z kostenfrei  |3 Volltext 
883 |8 1\p  |a cgwrk  |d 20250701  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
951 |a AR 
992 |a 20250611 
993 |a Article 
994 |a 2025 
998 |g 123246369  |a Zipf, Alexander  |m 123246369:Zipf, Alexander  |d 120000  |d 120700  |e 120000PZ123246369  |e 120700PZ123246369  |k 0/120000/  |k 1/120000/120700/  |p 6  |y j 
998 |g 131532847  |a Lautenbach, Sven  |m 131532847:Lautenbach, Sven  |d 120000  |e 120000PL131532847  |k 0/120000/  |p 5 
998 |g 1293410837  |a Knoblauch, Steffen  |m 1293410837:Knoblauch, Steffen  |d 120000  |d 120700  |e 120000PK1293410837  |e 120700PK1293410837  |k 0/120000/  |k 1/120000/120700/  |p 3 
999 |a KXP-PPN1927973082  |e 4733190654 
BIB |a Y 
SER |a journal 
JSO |a {"physDesc":[{"extent":"26 S.","noteIll":"Illustrationen"}],"id":{"doi":["10.1007/s43762-025-00172-2"],"eki":["1927973082"]},"title":[{"title":"An explainable GeoAI approach for the multimodal analysis of urban human dynamics","subtitle":"a case study for the COVID-19 pandemic in Rio de Janeiro","title_sort":"explainable GeoAI approach for the multimodal analysis of urban human dynamics"}],"type":{"media":"Online-Ressource","bibl":"article-journal"},"origin":[{"dateIssuedKey":"2025","dateIssuedDisp":"03 March 2025"}],"relHost":[{"language":["eng"],"part":{"volume":"5","year":"2025","issue":"1","pages":"1-26","extent":"26","text":"5(2025), 1, Artikel-ID 13, Seite 1-26"},"pubHistory":["Volume 1, issue 1 (December 2021)-"],"note":["Gesehen 10.08.2023"],"disp":"An explainable GeoAI approach for the multimodal analysis of urban human dynamics a case study for the COVID-19 pandemic in Rio de JaneiroComputational urban science","type":{"media":"Online-Ressource","bibl":"periodical"},"corporate":[{"role":"isb","display":"Jiang xi shi fan da xue"}],"name":{"displayForm":["Jiangxi Normal University"]},"recId":"1755847114","title":[{"title":"Computational urban science","title_sort":"Computational urban science"}],"physDesc":[{"extent":"Online-Ressource"}],"id":{"issn":["2730-6852"],"eki":["1755847114"],"zdb":["3061590-2"]},"origin":[{"dateIssuedDisp":"[2021]-","publisher":"Springer Nature","publisherPlace":"[Singapore]"}]}],"language":["eng"],"name":{"displayForm":["David Hanny, Dorian Arifi, Steffen Knoblauch, Bernd Resch, Sven Lautenbach, Alexander Zipf and Antonio Augusto de Aragão Rocha"]},"note":["Gesehen am 11.06.2025"],"recId":"1927973082","person":[{"display":"Hanny, David","given":"David","family":"Hanny","role":"aut"},{"role":"aut","family":"Arifi","given":"Dorian","display":"Arifi, Dorian"},{"display":"Knoblauch, Steffen","given":"Steffen","family":"Knoblauch","role":"aut"},{"family":"Resch","role":"aut","display":"Resch, Bernd","given":"Bernd"},{"family":"Lautenbach","role":"aut","given":"Sven","display":"Lautenbach, Sven"},{"role":"aut","family":"Zipf","display":"Zipf, Alexander","given":"Alexander"},{"role":"aut","family":"de Aragão Rocha","display":"de Aragão Rocha, Antonio Augusto","given":"Antonio Augusto"}]} 
SRT |a HANNYDAVIDEXPLAINABL0320