Machine learning-based in-silico analysis identifies signatures of lysyl oxidases for prognostic and therapeutic response prediction in cancer

Lysyl oxidases (LOX/LOXL1-4) are crucial for cancer progression, yet their transcriptional regulation, potential therapeutic targeting, prognostic value and involvement in immune regulation remain poorly understood. This study comprehensively evaluates LOX/LOXL expression in cancer and highlights ca...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Xu, Qingyu (VerfasserIn) , Ma, Ling (VerfasserIn) , Streuer, Alexander (VerfasserIn) , Altrock, Eva (VerfasserIn) , Schmitt, Nanni (VerfasserIn) , Rapp, Felicitas (VerfasserIn) , Klär, Alessa (VerfasserIn) , Nowak, Verena (VerfasserIn) , Obländer, Julia (VerfasserIn) , Weimer, Nadine (VerfasserIn) , Palme, Iris (VerfasserIn) , Göl, Melda (VerfasserIn) , Zhu, Hong-hu (VerfasserIn) , Hofmann, Wolf-Karsten (VerfasserIn) , Nowak, Daniel (VerfasserIn) , Riabov, Vladimir (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 05 April 2025
In: Cell communication and signaling
Year: 2025, Jahrgang: 23, Pages: 1-17
ISSN:1478-811X
DOI:10.1186/s12964-025-02176-1
Online-Zugang:Verlag, kostenfrei, Volltext: https://doi.org/10.1186/s12964-025-02176-1
Verlag, kostenfrei, Volltext: http://biosignaling.biomedcentral.com/articles/10.1186/s12964-025-02176-1
Volltext
Verfasserangaben:Qingyu Xu, Ling Ma, Alexander Streuer, Eva Altrock, Nanni Schmitt, Felicitas Rapp, Alessa Klär, Verena Nowak, Julia Obländer, Nadine Weimer, Iris Palme, Melda Göl, Hong-hu Zhu, Wolf-Karsten Hofmann, Daniel Nowak and Vladimir Riabov

MARC

LEADER 00000naa a2200000 c 4500
001 1929678193
003 DE-627
005 20250703112645.0
007 cr uuu---uuuuu
008 250703s2025 xx |||||o 00| ||eng c
024 7 |a 10.1186/s12964-025-02176-1  |2 doi 
035 |a (DE-627)1929678193 
035 |a (DE-599)KXP1929678193 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Xu, Qingyu  |d 1992-  |e VerfasserIn  |0 (DE-588)1257157019  |0 (DE-627)1801237581  |4 aut 
245 1 0 |a Machine learning-based in-silico analysis identifies signatures of lysyl oxidases for prognostic and therapeutic response prediction in cancer  |c Qingyu Xu, Ling Ma, Alexander Streuer, Eva Altrock, Nanni Schmitt, Felicitas Rapp, Alessa Klär, Verena Nowak, Julia Obländer, Nadine Weimer, Iris Palme, Melda Göl, Hong-hu Zhu, Wolf-Karsten Hofmann, Daniel Nowak and Vladimir Riabov 
264 1 |c 05 April 2025 
300 |b Illustrationen, Diagramme 
300 |a 17 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 03.07.2025 
520 |a Lysyl oxidases (LOX/LOXL1-4) are crucial for cancer progression, yet their transcriptional regulation, potential therapeutic targeting, prognostic value and involvement in immune regulation remain poorly understood. This study comprehensively evaluates LOX/LOXL expression in cancer and highlights cancer types where targeting these enzymes and developing LOX/LOXL-based prognostic models could have significant clinical relevance. We assessed the association of LOX/LOXL expression with survival and drug sensitivity via analyzing public datasets (including bulk and single-cell RNA sequencing data of six datasets from Gene Expression Omnibus (GEO), Chinese Glioma Genome Atlas (CGGA) and Cancer Genome Atlas Program (TCGA)). We performed comprehensive machine learning-based bioinformatics analyses, including unsupervised consensus clustering, a total of 10 machine-learning algorithms for prognostic prediction and the Connectivity map tool for drug sensitivity prediction. The clinical significance of the LOX/LOXL family was evaluated across 33 cancer types. Overexpression of LOX/LOXL showed a strong correlation with tumor progression and poor survival, particularly in glioma. Therefore, we developed a novel prognostic model for glioma by integrating LOX/LOXL expression and its co-expressed genes. This model was highly predictive for overall survival in glioma patients, indicating significant clinical utility in prognostic assessment. Furthermore, our analysis uncovered a distinct LOXL2-overexpressing malignant cell population in recurrent glioma, characterized by activation of collagen, laminin, and semaphorin-3 pathways, along with enhanced epithelial-mesenchymal transition. Apart from glioma, our data revealed the role of LOXL3 overexpression in macrophages and in predicting the response to immune checkpoint blockade in bladder and renal cancers. Given the pro-tumor role of LOX/LOXL genes in most analyzed cancers, we identified potential therapeutic compounds, such as the VEGFR inhibitor cediranib, to target pan-LOX/LOXL overexpression in cancer. Our study provides novel insights into the potential value of LOX/LOXL in cancer pathogenesis and treatment, and particularly its prognostic significance in glioma. 
700 1 |a Ma, Ling  |d 1998-  |e VerfasserIn  |0 (DE-588)1370506961  |0 (DE-627)1929678525  |4 aut 
700 1 |a Streuer, Alexander  |d 1994-  |e VerfasserIn  |0 (DE-588)1237642302  |0 (DE-627)1764370198  |4 aut 
700 1 |a Altrock, Eva  |d 1984-  |e VerfasserIn  |0 (DE-588)1139306588  |0 (DE-627)897058607  |0 (DE-576)493229027  |4 aut 
700 1 |a Schmitt, Nanni  |d 1991-  |e VerfasserIn  |0 (DE-588)1237642744  |0 (DE-627)1764370805  |4 aut 
700 1 |a Rapp, Felicitas  |e VerfasserIn  |0 (DE-588)1186995858  |0 (DE-627)1666277428  |4 aut 
700 1 |a Klär, Alessa  |d 1997-  |e VerfasserIn  |0 (DE-588)1370508824  |0 (DE-627)1929680201  |4 aut 
700 1 |a Nowak, Verena  |d 1981-  |e VerfasserIn  |0 (DE-588)1033389986  |0 (DE-627)741149680  |0 (DE-576)380986175  |4 aut 
700 1 |a Obländer, Julia  |d 1984-  |e VerfasserIn  |0 (DE-588)1033921459  |0 (DE-627)743670752  |0 (DE-576)381601609  |4 aut 
700 1 |a Weimer, Nadine  |d 1993-  |e VerfasserIn  |0 (DE-588)1237661013  |0 (DE-627)1764544277  |4 aut 
700 1 |a Palme, Iris  |d 1969-  |e VerfasserIn  |0 (DE-588)1163571024  |0 (DE-627)1027890113  |0 (DE-576)508058570  |4 aut 
700 1 |a Göl, Melda  |e VerfasserIn  |0 (DE-588)1296735699  |0 (DE-627)1853186392  |4 aut 
700 1 |a Zhu, Hong-hu  |e VerfasserIn  |4 aut 
700 1 |a Hofmann, Wolf-Karsten  |d 1967-  |e VerfasserIn  |0 (DE-588)114154635  |0 (DE-627)691208751  |0 (DE-576)351568336  |4 aut 
700 1 |a Nowak, Daniel  |d 1976-  |e VerfasserIn  |0 (DE-588)131932063  |0 (DE-627)51618041X  |0 (DE-576)298844540  |4 aut 
700 1 |a Riabov, Vladimir  |d 1983-  |e VerfasserIn  |0 (DE-588)1018515623  |0 (DE-627)690621361  |0 (DE-576)354034561  |4 aut 
773 0 8 |i Enthalten in  |t Cell communication and signaling  |d London : Biomed Central, 2003  |g 23(2025), Artikel-ID 169, Seite 1-17  |h Online-Ressource  |w (DE-627)37375275X  |w (DE-600)2126315-2  |w (DE-576)121906205  |x 1478-811X  |7 nnas  |a Machine learning-based in-silico analysis identifies signatures of lysyl oxidases for prognostic and therapeutic response prediction in cancer 
773 1 8 |g volume:23  |g year:2025  |g elocationid:169  |g pages:1-17  |g extent:17  |a Machine learning-based in-silico analysis identifies signatures of lysyl oxidases for prognostic and therapeutic response prediction in cancer 
856 4 0 |u https://doi.org/10.1186/s12964-025-02176-1  |x Verlag  |x Resolving-System  |z kostenfrei  |3 Volltext 
856 4 0 |u http://biosignaling.biomedcentral.com/articles/10.1186/s12964-025-02176-1  |x Verlag  |z kostenfrei  |3 Volltext 
951 |a AR 
992 |a 20250703 
993 |a Article 
994 |a 2025 
998 |g 1018515623  |a Riabov, Vladimir  |m 1018515623:Riabov, Vladimir  |p 16  |y j 
998 |g 131932063  |a Nowak, Daniel  |m 131932063:Nowak, Daniel  |d 60000  |d 61200  |d 60000  |e 60000PN131932063  |e 61200PN131932063  |e 60000PN131932063  |k 0/60000/  |k 1/60000/61200/  |k 0/60000/  |p 15 
998 |g 114154635  |a Hofmann, Wolf-Karsten  |m 114154635:Hofmann, Wolf-Karsten  |d 60000  |d 61200  |e 60000PH114154635  |e 61200PH114154635  |k 0/60000/  |k 1/60000/61200/  |p 14 
998 |g 1296735699  |a Göl, Melda  |m 1296735699:Göl, Melda  |p 12 
998 |g 1163571024  |a Palme, Iris  |m 1163571024:Palme, Iris  |d 60000  |d 61200  |e 60000PP1163571024  |e 61200PP1163571024  |k 0/60000/  |k 1/60000/61200/  |p 11 
998 |g 1237661013  |a Weimer, Nadine  |m 1237661013:Weimer, Nadine  |d 60000  |d 61200  |e 60000PW1237661013  |e 61200PW1237661013  |k 0/60000/  |k 1/60000/61200/  |p 10 
998 |g 1033921459  |a Obländer, Julia  |m 1033921459:Obländer, Julia  |d 60000  |e 60000PO1033921459  |k 0/60000/  |p 9 
998 |g 1033389986  |a Nowak, Verena  |m 1033389986:Nowak, Verena  |d 60000  |d 61200  |e 60000PN1033389986  |e 61200PN1033389986  |k 0/60000/  |k 1/60000/61200/  |p 8 
998 |g 1370508824  |a Klär, Alessa  |m 1370508824:Klär, Alessa  |d 60000  |e 60000PK1370508824  |k 0/60000/  |p 7 
998 |g 1186995858  |a Rapp, Felicitas  |m 1186995858:Rapp, Felicitas  |d 60000  |d 61200  |e 60000PR1186995858  |e 61200PR1186995858  |k 0/60000/  |k 1/60000/61200/  |p 6 
998 |g 1237642744  |a Schmitt, Nanni  |m 1237642744:Schmitt, Nanni  |d 60000  |d 61200  |e 60000PS1237642744  |e 61200PS1237642744  |k 0/60000/  |k 1/60000/61200/  |p 5 
998 |g 1139306588  |a Altrock, Eva  |m 1139306588:Altrock, Eva  |d 60000  |d 61200  |e 60000PA1139306588  |e 61200PA1139306588  |k 0/60000/  |k 1/60000/61200/  |p 4 
998 |g 1237642302  |a Streuer, Alexander  |m 1237642302:Streuer, Alexander  |d 60000  |d 61200  |e 60000PS1237642302  |e 61200PS1237642302  |k 0/60000/  |k 1/60000/61200/  |p 3 
998 |g 1370506961  |a Ma, Ling  |m 1370506961:Ma, Ling  |d 60000  |e 60000PM1370506961  |k 0/60000/  |p 2 
998 |g 1257157019  |a Xu, Qingyu  |m 1257157019:Xu, Qingyu  |p 1  |x j 
999 |a KXP-PPN1929678193  |e 4741943984 
BIB |a Y 
SER |a journal 
JSO |a {"origin":[{"dateIssuedKey":"2025","dateIssuedDisp":"05 April 2025"}],"id":{"doi":["10.1186/s12964-025-02176-1"],"eki":["1929678193"]},"language":["eng"],"type":{"media":"Online-Ressource","bibl":"article-journal"},"relHost":[{"disp":"Machine learning-based in-silico analysis identifies signatures of lysyl oxidases for prognostic and therapeutic response prediction in cancerCell communication and signaling","pubHistory":["1.2003 -"],"recId":"37375275X","note":["Gesehen am 04.05.04"],"id":{"zdb":["2126315-2"],"issn":["1478-811X"],"eki":["37375275X"]},"type":{"media":"Online-Ressource","bibl":"periodical"},"language":["eng"],"origin":[{"dateIssuedKey":"2003","publisher":"Biomed Central","publisherPlace":"London","dateIssuedDisp":"2003-"}],"part":{"pages":"1-17","text":"23(2025), Artikel-ID 169, Seite 1-17","year":"2025","extent":"17","volume":"23"},"title":[{"title_sort":"Cell communication and signaling","title":"Cell communication and signaling"}],"physDesc":[{"extent":"Online-Ressource"}]}],"person":[{"role":"aut","given":"Qingyu","display":"Xu, Qingyu","family":"Xu"},{"given":"Ling","display":"Ma, Ling","family":"Ma","role":"aut"},{"given":"Alexander","family":"Streuer","display":"Streuer, Alexander","role":"aut"},{"given":"Eva","display":"Altrock, Eva","family":"Altrock","role":"aut"},{"role":"aut","given":"Nanni","family":"Schmitt","display":"Schmitt, Nanni"},{"given":"Felicitas","display":"Rapp, Felicitas","family":"Rapp","role":"aut"},{"role":"aut","display":"Klär, Alessa","family":"Klär","given":"Alessa"},{"role":"aut","given":"Verena","family":"Nowak","display":"Nowak, Verena"},{"role":"aut","family":"Obländer","display":"Obländer, Julia","given":"Julia"},{"given":"Nadine","family":"Weimer","display":"Weimer, Nadine","role":"aut"},{"role":"aut","family":"Palme","display":"Palme, Iris","given":"Iris"},{"given":"Melda","display":"Göl, Melda","family":"Göl","role":"aut"},{"given":"Hong-hu","display":"Zhu, Hong-hu","family":"Zhu","role":"aut"},{"role":"aut","given":"Wolf-Karsten","family":"Hofmann","display":"Hofmann, Wolf-Karsten"},{"family":"Nowak","display":"Nowak, Daniel","given":"Daniel","role":"aut"},{"family":"Riabov","display":"Riabov, Vladimir","given":"Vladimir","role":"aut"}],"physDesc":[{"extent":"17 S.","noteIll":"Illustrationen, Diagramme"}],"title":[{"title":"Machine learning-based in-silico analysis identifies signatures of lysyl oxidases for prognostic and therapeutic response prediction in cancer","title_sort":"Machine learning-based in-silico analysis identifies signatures of lysyl oxidases for prognostic and therapeutic response prediction in cancer"}],"recId":"1929678193","note":["Gesehen am 03.07.2025"],"name":{"displayForm":["Qingyu Xu, Ling Ma, Alexander Streuer, Eva Altrock, Nanni Schmitt, Felicitas Rapp, Alessa Klär, Verena Nowak, Julia Obländer, Nadine Weimer, Iris Palme, Melda Göl, Hong-hu Zhu, Wolf-Karsten Hofmann, Daniel Nowak and Vladimir Riabov"]}} 
SRT |a XUQINGYUMAMACHINELEA0520