Multiscale multifeature vision learning for scalable and efficient wastewater treatment plant detection using Hi-Res satellite imagery and OSM

Filling data gaps in various global regions requires a robust approach that can accurately provide detection results from earth observation data. One of the challenges arises from significant heterogeneity in satellite images and variation in features and characteristics for specific ground objects...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Randhawa, Sukanya (VerfasserIn) , Randhawa, Guntaj (VerfasserIn) , Sivak, Olena (VerfasserIn) , Zech, Johannes (VerfasserIn) , Martin, Maria (VerfasserIn) , Zipf, Alexander (VerfasserIn) , Li, Yuze (VerfasserIn)
Dokumenttyp: Kapitel/Artikel Konferenzschrift
Sprache:Englisch
Veröffentlicht: 29 November 2025
In: Proceedings of the 1st ACM SIGSPATIAL International Workshop on Advances in Urban-AI
Year: 2023, Pages: 10-21
DOI:10.1145/3615900.3628772
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1145/3615900.3628772
Verlag, lizenzpflichtig, Volltext: https://dl.acm.org/doi/10.1145/3615900.3628772
Volltext
Verfasserangaben:Sukanya Randhawa, Guntaj Randhawa, Olena Sivak, Johannes Zech, Maria Martin, Alexander Zipf, Yuze Li

MARC

LEADER 00000naa a2200000 c 4500
001 1929703058
003 DE-627
005 20250703145414.0
007 cr uuu---uuuuu
008 250703s2023 xx |||||o 00| ||eng c
024 7 |a 10.1145/3615900.3628772  |2 doi 
035 |a (DE-627)1929703058 
035 |a (DE-599)KXP1929703058 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 61  |2 sdnb 
100 1 |a Randhawa, Sukanya  |d 1981-  |e VerfasserIn  |0 (DE-588)1368528678  |0 (DE-627)1928102174  |4 aut 
245 1 0 |a Multiscale multifeature vision learning for scalable and efficient wastewater treatment plant detection using Hi-Res satellite imagery and OSM  |c Sukanya Randhawa, Guntaj Randhawa, Olena Sivak, Johannes Zech, Maria Martin, Alexander Zipf, Yuze Li 
264 1 |c 29 November 2025 
300 |a 12 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 03.07.2025 
520 |a Filling data gaps in various global regions requires a robust approach that can accurately provide detection results from earth observation data. One of the challenges arises from significant heterogeneity in satellite images and variation in features and characteristics for specific ground objects like Wastewater Treatment Plants (WTPs). To overcome these challenges, we propose a novel multiscale multifeature hybrid model. This model leverages the power of deep learning-based object detection models, namely Yolov6, RTMDET, EfficientDET, and Domain Adaptation, to accurately and efficiently identify WTP locations worldwide. Our approach focuses on performance enhancements, including reduced false positives (FPs) and broad coverage. The strategies for achieving these improvements involve effective data processing approaches, model tuning, and adaptation. Moreover, we optimize training data features using Volunteered Geographic Information (VGI) data. We demonstrated the effectiveness of the suggested approach for three diverse global regions: Germany, France, and Malaysia. Our study gives new insights into WTP distribution when compared to existing databases like OpenStreetMap (OSM). The resulting pipeline delivers good results even in challenging rural and urban context. Moreover, it is well-suited for generating large scale WTP datasets, which is useful for many applications such as Critical Water Infrastructure mapping, Urban Planning, Climate Action and many more. 
533 |a Reproduktion  |f UrbanAI '23 
700 1 |a Randhawa, Guntaj  |e VerfasserIn  |4 aut 
700 1 |a Sivak, Olena  |e VerfasserIn  |4 aut 
700 1 |a Zech, Johannes  |e VerfasserIn  |4 aut 
700 1 |a Martin, Maria  |e VerfasserIn  |0 (DE-588)130028773X  |0 (DE-627)1858031206  |4 aut 
700 1 |a Zipf, Alexander  |d 1971-  |e VerfasserIn  |0 (DE-588)123246369  |0 (DE-627)082437076  |0 (DE-576)175641056  |4 aut 
700 1 |a Li, Yuze  |d 1995-  |e VerfasserIn  |0 (DE-588)1368530400  |0 (DE-627)1928104452  |4 aut 
773 0 8 |i Enthalten in  |t Proceedings of the 1st ACM SIGSPATIAL International Workshop on Advances in Urban-AI  |d [Erscheinungsort nicht ermittelbar] : Association for Computing Machinery, 2023  |g (2023), Seite 10-21  |h 84 p.  |w (DE-627)1877279900  |z 9798400703621  |7 nnam  |a Multiscale multifeature vision learning for scalable and efficient wastewater treatment plant detection using Hi-Res satellite imagery and OSM 
773 1 8 |g year:2023  |g pages:10-21  |g extent:12  |a Multiscale multifeature vision learning for scalable and efficient wastewater treatment plant detection using Hi-Res satellite imagery and OSM 
856 4 0 |u https://doi.org/10.1145/3615900.3628772  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u https://dl.acm.org/doi/10.1145/3615900.3628772  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20250703 
993 |a ConferencePaper 
994 |a 2023 
998 |g 1368530400  |a Li, Yuze  |m 1368530400:Li, Yuze  |d 120000  |d 120700  |e 120000PL1368530400  |e 120700PL1368530400  |k 0/120000/  |k 1/120000/120700/  |p 7  |y j 
998 |g 123246369  |a Zipf, Alexander  |m 123246369:Zipf, Alexander  |d 120000  |d 120700  |e 120000PZ123246369  |e 120700PZ123246369  |k 0/120000/  |k 1/120000/120700/  |p 6 
998 |g 130028773X  |a Martin, Maria  |m 130028773X:Martin, Maria  |d 120000  |d 120700  |e 120000PM130028773X  |e 120700PM130028773X  |k 0/120000/  |k 1/120000/120700/  |p 5 
998 |g 1368528678  |a Randhawa, Sukanya  |m 1368528678:Randhawa, Sukanya  |d 120000  |d 120700  |e 120000PR1368528678  |e 120700PR1368528678  |k 0/120000/  |k 1/120000/120700/  |p 1  |x j 
999 |a KXP-PPN1929703058  |e 4742018214 
BIB |a Y 
JSO |a {"language":["eng"],"name":{"displayForm":["Sukanya Randhawa, Guntaj Randhawa, Olena Sivak, Johannes Zech, Maria Martin, Alexander Zipf, Yuze Li"]},"recId":"1929703058","person":[{"role":"aut","family":"Randhawa","display":"Randhawa, Sukanya","given":"Sukanya"},{"role":"aut","family":"Randhawa","display":"Randhawa, Guntaj","given":"Guntaj"},{"display":"Sivak, Olena","given":"Olena","family":"Sivak","role":"aut"},{"display":"Zech, Johannes","given":"Johannes","family":"Zech","role":"aut"},{"display":"Martin, Maria","given":"Maria","role":"aut","family":"Martin"},{"family":"Zipf","role":"aut","display":"Zipf, Alexander","given":"Alexander"},{"given":"Yuze","display":"Li, Yuze","family":"Li","role":"aut"}],"note":["Gesehen am 03.07.2025"],"title":[{"title_sort":"Multiscale multifeature vision learning for scalable and efficient wastewater treatment plant detection using Hi-Res satellite imagery and OSM","title":"Multiscale multifeature vision learning for scalable and efficient wastewater treatment plant detection using Hi-Res satellite imagery and OSM"}],"type":{"bibl":"chapter","media":"Online-Ressource"},"id":{"eki":["1929703058"],"doi":["10.1145/3615900.3628772"]},"physDesc":[{"extent":"12 S."}],"relHost":[{"recId":"1877279900","language":["eng"],"part":{"year":"2023","text":"(2023), Seite 10-21","extent":"12","pages":"10-21"},"titleAlt":[{"title":"UrbanAI '23"}],"origin":[{"dateIssuedKey":"2023","publisherPlace":"[Erscheinungsort nicht ermittelbar]","publisher":"Association for Computing Machinery","dateIssuedDisp":"29 November 2023"}],"title":[{"subtitle":"Hamburg, Germany, 13 November 2023","title":"Proceedings of the 1st ACM SIGSPATIAL International Workshop on Advances in Urban-AI","title_sort":"Proceedings of the 1st ACM SIGSPATIAL International Workshop on Advances in Urban-AI"}],"disp":"Multiscale multifeature vision learning for scalable and efficient wastewater treatment plant detection using Hi-Res satellite imagery and OSMProceedings of the 1st ACM SIGSPATIAL International Workshop on Advances in Urban-AI","type":{"media":"Online-Ressource","bibl":"edited-book"},"physDesc":[{"extent":"84 p."}],"id":{"eki":["1877279900"],"doi":["10.1145/3615900"],"isbn":["9798400703621"]}}],"origin":[{"dateIssuedDisp":"29 November 2025","dateIssuedKey":"2023"}]} 
SRT |a RANDHAWASUMULTISCALE2920