scMaui: a widely applicable deep learning framework for single-cell multiomics integration in the presence of batch effects and missing data

The recent advances in high-throughput single-cell sequencing have created an urgent demand for computational models which can address the high complexity of single-cell multiomics data. Meticulous single-cell multiomics integration models are required to avoid biases towards a specific modality and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Jeong, Yunhee (VerfasserIn) , Ronen, Jonathan (VerfasserIn) , Kopp, Wolfgang (VerfasserIn) , Lutsik, Pavlo (VerfasserIn) , Akalin, Altuna (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 06 August 2024
In: BMC bioinformatics
Year: 2024, Jahrgang: 25, Pages: 1-22
ISSN:1471-2105
DOI:10.1186/s12859-024-05880-w
Online-Zugang:Verlag, kostenfrei, Volltext: https://doi.org/10.1186/s12859-024-05880-w
Volltext
Verfasserangaben:Yunhee Jeong, Jonathan Ronen, Wolfgang Kopp, Pavlo Lutsik and Altuna Akalin

MARC

LEADER 00000caa a2200000 c 4500
001 1930409311
003 DE-627
005 20250913141730.0
007 cr uuu---uuuuu
008 250714s2024 xx |||||o 00| ||eng c
024 7 |a 10.1186/s12859-024-05880-w  |2 doi 
035 |a (DE-627)1930409311 
035 |a (DE-599)KXP1930409311 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 28  |2 sdnb 
100 1 |a Jeong, Yunhee  |d 1995-  |e VerfasserIn  |0 (DE-588)1324464143  |0 (DE-627)188432908X  |4 aut 
245 1 0 |a scMaui  |b a widely applicable deep learning framework for single-cell multiomics integration in the presence of batch effects and missing data  |c Yunhee Jeong, Jonathan Ronen, Wolfgang Kopp, Pavlo Lutsik and Altuna Akalin 
264 1 |c 06 August 2024 
300 |b Illustrationen 
300 |a 22 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 14.07.2025 
520 |a The recent advances in high-throughput single-cell sequencing have created an urgent demand for computational models which can address the high complexity of single-cell multiomics data. Meticulous single-cell multiomics integration models are required to avoid biases towards a specific modality and overcome sparsity. Batch effects obfuscating biological signals must also be taken into account. Here, we introduce a new single-cell multiomics integration model, Single-cell Multiomics Autoencoder Integration (scMaui) based on variational product-of-experts autoencoders and adversarial learning. scMaui calculates a joint representation of multiple marginal distributions based on a product-of-experts approach which is especially effective for missing values in the modalities. Furthermore, it overcomes limitations seen in previous VAE-based integration methods with regard to batch effect correction and restricted applicable assays. It handles multiple batch effects independently accepting both discrete and continuous values, as well as provides varied reconstruction loss functions to cover all possible assays and preprocessing pipelines. We demonstrate that scMaui achieves superior performance in many tasks compared to other methods. Further downstream analyses also demonstrate its potential in identifying relations between assays and discovering hidden subpopulations. 
650 4 |a Autoencoders 
650 4 |a Deep learning 
650 4 |a Multi-omics 
650 4 |a Single cell 
700 1 |a Ronen, Jonathan  |e VerfasserIn  |4 aut 
700 1 |a Kopp, Wolfgang  |e VerfasserIn  |4 aut 
700 1 |a Lutsik, Pavlo  |e VerfasserIn  |0 (DE-588)1176218166  |0 (DE-627)1047372894  |0 (DE-576)516581988  |4 aut 
700 1 |a Akalin, Altuna  |e VerfasserIn  |4 aut 
773 0 8 |i Enthalten in  |t BMC bioinformatics  |d London : BioMed Central, 2000  |g 25(2024), Artikel-ID 257, Seite 1-22  |h Online-Ressource  |w (DE-627)326644814  |w (DE-600)2041484-5  |w (DE-576)107014688  |x 1471-2105  |7 nnas  |a scMaui a widely applicable deep learning framework for single-cell multiomics integration in the presence of batch effects and missing data 
773 1 8 |g volume:25  |g year:2024  |g elocationid:257  |g pages:1-22  |g extent:22  |a scMaui a widely applicable deep learning framework for single-cell multiomics integration in the presence of batch effects and missing data 
856 4 0 |u https://doi.org/10.1186/s12859-024-05880-w  |x Verlag  |x Resolving-System  |z kostenfrei  |3 Volltext 
951 |a AR 
992 |a 20250714 
993 |a Article 
994 |a 2024 
998 |g 1176218166  |a Lutsik, Pavlo  |m 1176218166:Lutsik, Pavlo  |d 50000  |e 50000PL1176218166  |k 0/50000/  |p 4 
998 |g 1324464143  |a Jeong, Yunhee  |m 1324464143:Jeong, Yunhee  |p 1  |x j 
999 |a KXP-PPN1930409311  |e 4745945191 
BIB |a Y 
SER |a journal 
JSO |a {"physDesc":[{"noteIll":"Illustrationen","extent":"22 S."}],"relHost":[{"id":{"issn":["1471-2105"],"eki":["326644814"],"zdb":["2041484-5"]},"origin":[{"dateIssuedDisp":"2000-","publisher":"BioMed Central ; Springer","dateIssuedKey":"2000","publisherPlace":"London ; Berlin ; Heidelberg"}],"physDesc":[{"extent":"Online-Ressource"}],"title":[{"title_sort":"BMC bioinformatics","title":"BMC bioinformatics"}],"part":{"volume":"25","text":"25(2024), Artikel-ID 257, Seite 1-22","extent":"22","year":"2024","pages":"1-22"},"pubHistory":["1.2000 -"],"recId":"326644814","language":["eng"],"note":["Gesehen am 22.05.20"],"disp":"scMaui a widely applicable deep learning framework for single-cell multiomics integration in the presence of batch effects and missing dataBMC bioinformatics","type":{"bibl":"periodical","media":"Online-Ressource"}}],"name":{"displayForm":["Yunhee Jeong, Jonathan Ronen, Wolfgang Kopp, Pavlo Lutsik and Altuna Akalin"]},"origin":[{"dateIssuedKey":"2024","dateIssuedDisp":"06 August 2024"}],"id":{"doi":["10.1186/s12859-024-05880-w"],"eki":["1930409311"]},"note":["Gesehen am 14.07.2025"],"type":{"bibl":"article-journal","media":"Online-Ressource"},"recId":"1930409311","language":["eng"],"person":[{"family":"Jeong","given":"Yunhee","roleDisplay":"VerfasserIn","display":"Jeong, Yunhee","role":"aut"},{"family":"Ronen","given":"Jonathan","roleDisplay":"VerfasserIn","display":"Ronen, Jonathan","role":"aut"},{"given":"Wolfgang","family":"Kopp","role":"aut","display":"Kopp, Wolfgang","roleDisplay":"VerfasserIn"},{"given":"Pavlo","family":"Lutsik","role":"aut","roleDisplay":"VerfasserIn","display":"Lutsik, Pavlo"},{"given":"Altuna","family":"Akalin","role":"aut","display":"Akalin, Altuna","roleDisplay":"VerfasserIn"}],"title":[{"title_sort":"scMaui","subtitle":"a widely applicable deep learning framework for single-cell multiomics integration in the presence of batch effects and missing data","title":"scMaui"}]} 
SRT |a JEONGYUNHESCMAUI0620