Forecasting crude oil prices using reservoir computing models

Accurate forecasting of crude oil prices is crucial for informed financial decision-making. This study presents a cutting-edge Reservoir Computing (RC) model specifically designed for precise crude oil price predictions, outperforming traditional methods such as ARIMA, LSTM, and GRU. Using daily clo...

Full description

Saved in:
Bibliographic Details
Main Author: Kumar, Kaushal (Author)
Format: Article (Journal)
Language:English
Published: 2025
In: Computational economics
Year: 2025, Volume: 66, Issue: 3, Pages: 2543-2563
ISSN:1572-9974
DOI:10.1007/s10614-024-10797-w
Subjects:
Online Access:Verlag, kostenfrei: https://link.springer.com/content/pdf/10.1007/s10614-024-10797-w.pdf
Verlag, kostenfrei, Volltext: https://doi.org/10.1007/s10614-024-10797-w
Get full text
Author Notes:Kaushal Kumar

MARC

LEADER 00000caa a2200000 c 4500
001 1931000867
003 DE-627
005 20260204132934.0
007 cr uuu---uuuuu
008 250717s2025 xx |||||o 00| ||eng c
024 7 |a 10.1007/s10614-024-10797-w  |2 doi 
035 |a (DE-627)1931000867 
035 |a (DE-599)KXP1931000867 
035 |a (OCoLC)1559703162 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Kumar, Kaushal  |e VerfasserIn  |0 (DE-588)130324425X  |0 (DE-627)186016188X  |4 aut 
245 1 0 |a Forecasting crude oil prices using reservoir computing models  |c Kaushal Kumar 
264 1 |c 2025 
300 |b Illustrationen 
300 |a 21 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Veröffentlicht: 28 November 2024 
500 |a Gesehen am 17.07.2025 
520 |a Accurate forecasting of crude oil prices is crucial for informed financial decision-making. This study presents a cutting-edge Reservoir Computing (RC) model specifically designed for precise crude oil price predictions, outperforming traditional methods such as ARIMA, LSTM, and GRU. Using daily closing prices from major indices spanning January 2010 to December 2023, we conducted a thorough evaluation. The RC model consistently demonstrates superior accuracy and computational efficiency. Quantitative metrics reveal the RC model’s dominance with a Mean Absolute Error (MAE) of 0.0094, Mean Squared Error (MSE) of 0.00035, Root Mean Squared Error (RMSE) of 0.0196, and a notably low Mean Absolute Percentage Error (MAPE) of $$1.450\%$$. Additionally, the RC model’s runtime of 1.11 s underscores its computational efficiency, far surpassing ARIMA (493.22 s), LSTM (423.55 s), and GRU (15.73 s). During periods of economic disruption, such as the COVID-19 lockdowns, the RC model effectively captured sharp price fluctuations, highlighting its robust forecasting capability. These findings emphasize the RC model’s potential as a reliable tool for enhancing decision-making processes in the dynamic energy market, particularly for real-time applications such as infectious disease case count forecasting. This study advocates for the broader adoption of Reservoir Computing models to improve predictive accuracy and operational efficiency in energy economics. 
650 4 |a Computational Economics 
650 4 |a Computational Intelligence 
650 4 |a Computational Neuroscience 
650 4 |a Computer Science 
650 4 |a Crude oil prices 
650 4 |a Energy Informatics 
650 4 |a Financial market prediction 
650 4 |a Forecasting 
650 4 |a Information Processing 
650 4 |a Reservoir computing 
650 4 |a Time series analysis 
655 4 |0 (DE-206)49  |a Aufsatz in Zeitschrift  |5 DE-206 
773 0 8 |i Enthalten in  |t Computational economics  |d Dordrecht [u.a.] : Springer Science + Business Media B.V., 1988  |g 66(2025), 3 vom: Sept., Seite 2543-2563  |h Online-Ressource  |w (DE-627)270427546  |w (DE-600)1477445-8  |w (DE-576)121190374  |x 1572-9974  |7 nnas  |a Forecasting crude oil prices using reservoir computing models 
773 1 8 |g volume:66  |g year:2025  |g number:3  |g month:09  |g pages:2543-2563  |g extent:21  |a Forecasting crude oil prices using reservoir computing models 
856 4 0 |u https://link.springer.com/content/pdf/10.1007/s10614-024-10797-w.pdf  |q application/pdf  |x Verlag  |z kostenfrei  |7 0 
856 4 0 |u https://doi.org/10.1007/s10614-024-10797-w  |x Verlag  |x Resolving-System  |z kostenfrei  |3 Volltext  |7 0 
951 |a AR 
992 |a 20250717 
993 |a Article 
994 |a 2025 
998 |g 130324425X  |a Kumar, Kaushal  |m 130324425X:Kumar, Kaushal  |d 700000  |d 708000  |e 700000PK130324425X  |e 708000PK130324425X  |k 0/700000/  |k 1/700000/708000/  |p 1  |x j  |y j 
999 |a KXP-PPN1931000867  |e 4747179836 
BIB |a Y 
SER |a journal 
JSO |a {"relHost":[{"pubHistory":["1.1988 -"],"recId":"270427546","note":["Gesehen am 16.01.08"],"disp":"Forecasting crude oil prices using reservoir computing modelsComputational economics","part":{"volume":"66","pages":"2543-2563","text":"66(2025), 3 vom: Sept., Seite 2543-2563","year":"2025","extent":"21","issue":"3"},"title":[{"title_sort":"Computational economics","title":"Computational economics"}],"titleAlt":[{"title":"Computer science in economics and management"}],"physDesc":[{"extent":"Online-Ressource"}],"origin":[{"dateIssuedKey":"1988","publisher":"Springer Science + Business Media B.V. ; Proquest ; Kluwer Academic Publishers","dateIssuedDisp":"1988-","publisherPlace":"Dordrecht [u.a.] ; [Erscheinungsort nicht ermittelbar] ; Dordrecht [u.a.]"}],"id":{"eki":["270427546"],"issn":["1572-9974"],"zdb":["1477445-8"]},"language":["eng"],"type":{"media":"Online-Ressource","bibl":"periodical"}}],"person":[{"family":"Kumar","display":"Kumar, Kaushal","given":"Kaushal","role":"aut"}],"physDesc":[{"noteIll":"Illustrationen","extent":"21 S."}],"title":[{"title":"Forecasting crude oil prices using reservoir computing models","title_sort":"Forecasting crude oil prices using reservoir computing models"}],"id":{"doi":["10.1007/s10614-024-10797-w"],"eki":["1931000867"]},"language":["eng"],"type":{"media":"Online-Ressource","bibl":"article-journal"},"origin":[{"dateIssuedDisp":"2025","dateIssuedKey":"2025"}],"note":["Veröffentlicht: 28 November 2024","Gesehen am 17.07.2025"],"recId":"1931000867","name":{"displayForm":["Kaushal Kumar"]}} 
SRT |a KUMARKAUSHFORECASTIN2025