Testing Bayesian inference of GRMHD model parameters from VLBI data

Recent observations by the Event Horizon Telescope (EHT) of supermassive black holes M87* and Sgr A* offer valuable insights into their space-time properties and astrophysical conditions. Utilizing a library of model images ($\sim 2$ million for Sgr A*) generated from general-relativistic magnetohyd...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Yfantis, Aristomenis Ilias (VerfasserIn) , Zhao, S. (VerfasserIn) , Gold, Roman (VerfasserIn) , Mościbrodzka, M. (VerfasserIn) , Broderick, A. E. (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: December 2024
In: Monthly notices of the Royal Astronomical Society
Year: 2024, Jahrgang: 535, Heft: 4, Pages: 3181-3197
ISSN:1365-2966
DOI:10.1093/mnras/stae2509
Online-Zugang:Verlag, kostenfrei, Volltext: https://doi.org/10.1093/mnras/stae2509
Verlag, kostenfrei, Volltext: https://academic.oup.com/mnras/article/535/4/3181/7885349?login=true
Volltext
Verfasserangaben:A.I. Yfantis, S. Zhao, R. Gold, M. Mościbrodzka and A.E. Broderick

MARC

LEADER 00000naa a2200000 c 4500
001 1931393176
003 DE-627
005 20250721142055.0
007 cr uuu---uuuuu
008 250721s2024 xx |||||o 00| ||eng c
024 7 |a 10.1093/mnras/stae2509  |2 doi 
035 |a (DE-627)1931393176 
035 |a (DE-599)KXP1931393176 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 29  |2 sdnb 
100 1 |a Yfantis, Aristomenis Ilias  |e VerfasserIn  |0 (DE-588)1372031669  |0 (DE-627)1931393958  |4 aut 
245 1 0 |a Testing Bayesian inference of GRMHD model parameters from VLBI data  |c A.I. Yfantis, S. Zhao, R. Gold, M. Mościbrodzka and A.E. Broderick 
264 1 |c December 2024 
300 |b Illustrationen 
300 |a 17 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Online verfügbar: 07. November 2024, Artikelversion: 28. November 2024 
500 |a Gesehen am 21.07.2025 
520 |a Recent observations by the Event Horizon Telescope (EHT) of supermassive black holes M87* and Sgr A* offer valuable insights into their space-time properties and astrophysical conditions. Utilizing a library of model images ($\sim 2$ million for Sgr A*) generated from general-relativistic magnetohydrodynamic (GRMHD) simulations, limited and coarse insights on key parameters such as black hole spin, magnetic flux, inclination angle, and electron temperature were gained. The image orientation and black hole mass estimates were obtained via a scoring and an approximate rescaling procedure. Lifting such approximations, probing the space of parameters continuously, and extending the parameter space of theoretical models is both desirable and computationally prohibitive with existing methods. To address this, we introduce a new Bayesian scheme that adaptively explores the parameter space of ray-traced, GRMHD models. The general relativistic radiative transfer code IPOLE is integrated with the EHT parameter estimation tool THEMIS. The pipeline produces a ray-traced model image from GRMHD data, computes predictions for very long baseline interferometric (VLBI) observables from the image for a specific VLBI array configuration and compares to data, thereby sampling the likelihood surface via a Markov chain Monte Carlo scheme. At this stage we focus on four parameters: accretion rate, electron thermodynamics, inclination, and source position angle. Our scheme faithfully recovers parameters from simulated VLBI data and accommodates time-variability via an inflated error budget. We highlight the impact of intrinsic variability on model fitting approaches. This work facilitates more informed inferences from GRMHD simulations and enables expansion of the model parameter space in a statistically robust and computationally efficient manner. 
700 1 |a Zhao, S.  |e VerfasserIn  |4 aut 
700 1 |a Gold, Roman  |d 1981-  |e VerfasserIn  |0 (DE-588)102124886X  |0 (DE-627)689764553  |0 (DE-576)362832188  |4 aut 
700 1 |a Mościbrodzka, M.  |e VerfasserIn  |4 aut 
700 1 |a Broderick, A. E.  |e VerfasserIn  |4 aut 
773 0 8 |i Enthalten in  |a Royal Astronomical Society  |t Monthly notices of the Royal Astronomical Society  |d Oxford : Oxford Univ. Press, 1827  |g 535(2024), 4 vom: Dez., Seite 3181-3197  |h Online-Ressource  |w (DE-627)314059164  |w (DE-600)2016084-7  |w (DE-576)090955420  |x 1365-2966  |7 nnas 
773 1 8 |g volume:535  |g year:2024  |g number:4  |g month:12  |g pages:3181-3197  |g extent:17  |a Testing Bayesian inference of GRMHD model parameters from VLBI data 
856 4 0 |u https://doi.org/10.1093/mnras/stae2509  |x Verlag  |x Resolving-System  |z kostenfrei  |3 Volltext 
856 4 0 |u https://academic.oup.com/mnras/article/535/4/3181/7885349?login=true  |x Verlag  |z kostenfrei  |3 Volltext 
951 |a AR 
992 |a 20250721 
993 |a Article 
994 |a 2024 
998 |g 102124886X  |a Gold, Roman  |m 102124886X:Gold, Roman  |d 700000  |d 708000  |e 700000PG102124886X  |e 708000PG102124886X  |k 0/700000/  |k 1/700000/708000/  |p 3 
999 |a KXP-PPN1931393176  |e 4748301627 
BIB |a Y 
SER |a journal 
JSO |a {"id":{"doi":["10.1093/mnras/stae2509"],"eki":["1931393176"]},"recId":"1931393176","relHost":[{"corporate":[{"role":"aut","display":"Royal Astronomical Society"}],"part":{"pages":"3181-3197","year":"2024","issue":"4","text":"535(2024), 4 vom: Dez., Seite 3181-3197","extent":"17","volume":"535"},"language":["eng"],"type":{"bibl":"periodical","media":"Online-Ressource"},"disp":"Royal Astronomical SocietyMonthly notices of the Royal Astronomical Society","note":["Gesehen am 15.01.2018"],"origin":[{"publisherPlace":"Oxford ; Oxford [u.a.] ; Oxford [u.a.]","dateIssuedDisp":"1827-","publisher":"Oxford Univ. Press ; Blackwell ; Wiley-Blackwell","dateIssuedKey":"1827"}],"pubHistory":["1.1827 -"],"title":[{"title":"Monthly notices of the Royal Astronomical Society","title_sort":"Monthly notices of the Royal Astronomical Society"}],"id":{"eki":["314059164"],"doi":["10.1111/(ISSN)1365-2966"],"zdb":["2016084-7"],"issn":["1365-2966"]},"recId":"314059164","physDesc":[{"extent":"Online-Ressource"}]}],"name":{"displayForm":["A.I. Yfantis, S. Zhao, R. Gold, M. Mościbrodzka and A.E. Broderick"]},"physDesc":[{"extent":"17 S.","noteIll":"Illustrationen"}],"type":{"media":"Online-Ressource","bibl":"article-journal"},"origin":[{"dateIssuedDisp":"December 2024","dateIssuedKey":"2024"}],"note":["Online verfügbar: 07. November 2024, Artikelversion: 28. November 2024","Gesehen am 21.07.2025"],"title":[{"title":"Testing Bayesian inference of GRMHD model parameters from VLBI data","title_sort":"Testing Bayesian inference of GRMHD model parameters from VLBI data"}],"language":["eng"],"person":[{"display":"Yfantis, Aristomenis Ilias","family":"Yfantis","role":"aut","given":"Aristomenis Ilias"},{"family":"Zhao","display":"Zhao, S.","role":"aut","given":"S."},{"display":"Gold, Roman","family":"Gold","role":"aut","given":"Roman"},{"role":"aut","given":"M.","display":"Mościbrodzka, M.","family":"Mościbrodzka"},{"role":"aut","given":"A. E.","display":"Broderick, A. E.","family":"Broderick"}]} 
SRT |a YFANTISARITESTINGBAY2024