Prediction of systemic biomarkers from retinal photographs: development and validation of deep-learning algorithms

Background - The application of deep learning to retinal photographs has yielded promising results in predicting age, sex, blood pressure, and haematological parameters. However, the broader applicability of retinal photograph-based deep learning for predicting other systemic biomarkers and the gene...

Full description

Saved in:
Bibliographic Details
Main Authors: Rim, Tyler Hyungtaek (Author) , Lee, Geunyoung (Author) , Kim, Youngnam (Author) , Tham, Yih-Chung (Author) , Lee, Chan Joo (Author) , Baik, Su Jung (Author) , Kim, Young Ah (Author) , Yu, Marco (Author) , Deshmukh, Mihir (Author) , Lee, Byoung Kwon (Author) , Park, Sungha (Author) , Kim, Hyeon Chang (Author) , Sabayanagam, Charumathi (Author) , Ting, Daniel S W (Author) , Wang, Ya Xing (Author) , Jonas, Jost B. (Author) , Kim, Sung Soo (Author) , Wong, Tien Yin (Author) , Cheng, Ching-Yu (Author)
Format: Article (Journal)
Language:English
Published: October 2020
In: The lancet. Digital health
Year: 2020, Volume: 2, Issue: 10, Pages: e526-e536
ISSN:2589-7500
DOI:10.1016/S2589-7500(20)30216-8
Online Access:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1016/S2589-7500(20)30216-8
Verlag, lizenzpflichtig, Volltext: https://www.sciencedirect.com/science/article/pii/S2589750020302168
Get full text
Author Notes:Tyler Hyungtaek Rim, Geunyoung Lee, Youngnam Kim, Yih-Chung Tham, Chan Joo Lee, Su Jung Baik, Young Ah Kim, Marco Yu, Mihir Deshmukh, Byoung Kwon Lee, Sungha Park, Hyeon Chang Kim, Charumathi Sabayanagam, Daniel S W Ting, Ya Xing Wang, Jost B Jonas, Sung Soo Kim, Tien Yin Wong, Ching-Yu Cheng

MARC

LEADER 00000naa a2200000 c 4500
001 1931404623
003 DE-627
005 20250721154929.0
007 cr uuu---uuuuu
008 250721s2020 xx |||||o 00| ||eng c
024 7 |a 10.1016/S2589-7500(20)30216-8  |2 doi 
035 |a (DE-627)1931404623 
035 |a (DE-599)KXP1931404623 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Rim, Tyler Hyungtaek  |e VerfasserIn  |0 (DE-588)1372036393  |0 (DE-627)1931404437  |4 aut 
245 1 0 |a Prediction of systemic biomarkers from retinal photographs  |b development and validation of deep-learning algorithms  |c Tyler Hyungtaek Rim, Geunyoung Lee, Youngnam Kim, Yih-Chung Tham, Chan Joo Lee, Su Jung Baik, Young Ah Kim, Marco Yu, Mihir Deshmukh, Byoung Kwon Lee, Sungha Park, Hyeon Chang Kim, Charumathi Sabayanagam, Daniel S W Ting, Ya Xing Wang, Jost B Jonas, Sung Soo Kim, Tien Yin Wong, Ching-Yu Cheng 
264 1 |c October 2020 
300 |b Illustrationen 
300 |a 11 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 21.07.2025 
520 |a Background - The application of deep learning to retinal photographs has yielded promising results in predicting age, sex, blood pressure, and haematological parameters. However, the broader applicability of retinal photograph-based deep learning for predicting other systemic biomarkers and the generalisability of this approach to various populations remains unexplored. - Methods - With use of 236 257 retinal photographs from seven diverse Asian and European cohorts (two health screening centres in South Korea, the Beijing Eye Study, three cohorts in the Singapore Epidemiology of Eye Diseases study, and the UK Biobank), we evaluated the capacities of 47 deep-learning algorithms to predict 47 systemic biomarkers as outcome variables, including demographic factors (age and sex); body composition measurements; blood pressure; haematological parameters; lipid profiles; biochemical measures; biomarkers related to liver function, thyroid function, kidney function, and inflammation; and diabetes. The standard neural network architecture of VGG16 was adopted for model development. - Findings - In addition to previously reported systemic biomarkers, we showed quantification of body composition indices (muscle mass, height, and bodyweight) and creatinine from retinal photographs. Body muscle mass could be predicted with an R2 of 0·52 (95% CI 0·51-0·53) in the internal test set, and of 0·33 (0·30-0·35) in one external test set with muscle mass measurement available. The R2 value for the prediction of height was 0·42 (0·40-0·43), of bodyweight was 0·36 (0·34-0·37), and of creatinine was 0·38 (0·37-0·40) in the internal test set. However, the performances were poorer in external test sets (with the lowest performance in the European cohort), with R2 values ranging between 0·08 and 0·28 for height, 0·04 and 0·19 for bodyweight, and 0·01 and 0·26 for creatinine. Of the 47 systemic biomarkers, 37 could not be predicted well from retinal photographs via deep learning (R2≤0·14 across all external test sets). - Interpretation - Our work provides new insights into the potential use of retinal photographs to predict systemic biomarkers, including body composition indices and serum creatinine, using deep learning in populations with a similar ethnic background. Further evaluations are warranted to validate these findings and evaluate the clinical utility of these algorithms. - Funding - Agency for Science, Technology, and Research and National Medical Research Council, Singapore; Korea Institute for Advancement of Technology. 
700 1 |a Lee, Geunyoung  |e VerfasserIn  |4 aut 
700 1 |a Kim, Youngnam  |e VerfasserIn  |4 aut 
700 1 |a Tham, Yih-Chung  |e VerfasserIn  |4 aut 
700 1 |a Lee, Chan Joo  |e VerfasserIn  |4 aut 
700 1 |a Baik, Su Jung  |e VerfasserIn  |4 aut 
700 1 |a Kim, Young Ah  |e VerfasserIn  |4 aut 
700 1 |a Yu, Marco  |e VerfasserIn  |4 aut 
700 1 |a Deshmukh, Mihir  |e VerfasserIn  |4 aut 
700 1 |a Lee, Byoung Kwon  |e VerfasserIn  |4 aut 
700 1 |a Park, Sungha  |e VerfasserIn  |4 aut 
700 1 |a Kim, Hyeon Chang  |e VerfasserIn  |4 aut 
700 1 |a Sabayanagam, Charumathi  |e VerfasserIn  |4 aut 
700 1 |a Ting, Daniel S W  |e VerfasserIn  |4 aut 
700 1 |a Wang, Ya Xing  |e VerfasserIn  |4 aut 
700 1 |a Jonas, Jost B.  |d 1958-  |e VerfasserIn  |0 (DE-588)1028286732  |0 (DE-627)730536823  |0 (DE-576)37578537X  |4 aut 
700 1 |a Kim, Sung Soo  |e VerfasserIn  |4 aut 
700 1 |a Wong, Tien Yin  |e VerfasserIn  |4 aut 
700 1 |a Cheng, Ching-Yu  |e VerfasserIn  |4 aut 
773 0 8 |i Enthalten in  |t The lancet. Digital health  |d London : The Lancet, 2019  |g 2(2020), 10 vom: Okt., Seite e526-e536  |h Online-Ressource  |w (DE-627)1665782404  |w (DE-600)2972368-1  |x 2589-7500  |7 nnas  |a Prediction of systemic biomarkers from retinal photographs development and validation of deep-learning algorithms 
773 1 8 |g volume:2  |g year:2020  |g number:10  |g month:10  |g pages:e526-e536  |g extent:11  |a Prediction of systemic biomarkers from retinal photographs development and validation of deep-learning algorithms 
856 4 0 |u https://doi.org/10.1016/S2589-7500(20)30216-8  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u https://www.sciencedirect.com/science/article/pii/S2589750020302168  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20250721 
993 |a Article 
994 |a 2020 
998 |g 1028286732  |a Jonas, Jost B.  |m 1028286732:Jonas, Jost B.  |d 60000  |e 60000PJ1028286732  |k 0/60000/  |p 16 
999 |a KXP-PPN1931404623  |e 4748353554 
BIB |a Y 
SER |a journal 
JSO |a {"relHost":[{"disp":"Prediction of systemic biomarkers from retinal photographs development and validation of deep-learning algorithmsThe lancet. Digital health","part":{"volume":"2","pages":"e526-e536","extent":"11","issue":"10","year":"2020","text":"2(2020), 10 vom: Okt., Seite e526-e536"},"title":[{"partname":"Digital health","title":"The lancet","title_sort":"lancet"}],"language":["eng"],"physDesc":[{"extent":"Online-Ressource"}],"pubHistory":["Volume 1, issue 1 (May 2019)-"],"type":{"bibl":"periodical","media":"Online-Ressource"},"recId":"1665782404","id":{"zdb":["2972368-1"],"eki":["1665782404"],"issn":["2589-7500"]},"origin":[{"dateIssuedDisp":"[2019]-","publisherPlace":"London","publisher":"The Lancet"}]}],"type":{"media":"Online-Ressource","bibl":"article-journal"},"person":[{"given":"Tyler Hyungtaek","role":"aut","family":"Rim","display":"Rim, Tyler Hyungtaek"},{"given":"Geunyoung","display":"Lee, Geunyoung","family":"Lee","role":"aut"},{"given":"Youngnam","role":"aut","display":"Kim, Youngnam","family":"Kim"},{"family":"Tham","display":"Tham, Yih-Chung","role":"aut","given":"Yih-Chung"},{"role":"aut","display":"Lee, Chan Joo","family":"Lee","given":"Chan Joo"},{"family":"Baik","display":"Baik, Su Jung","role":"aut","given":"Su Jung"},{"given":"Young Ah","display":"Kim, Young Ah","family":"Kim","role":"aut"},{"display":"Yu, Marco","family":"Yu","role":"aut","given":"Marco"},{"given":"Mihir","role":"aut","family":"Deshmukh","display":"Deshmukh, Mihir"},{"family":"Lee","display":"Lee, Byoung Kwon","role":"aut","given":"Byoung Kwon"},{"given":"Sungha","role":"aut","family":"Park","display":"Park, Sungha"},{"given":"Hyeon Chang","role":"aut","family":"Kim","display":"Kim, Hyeon Chang"},{"given":"Charumathi","family":"Sabayanagam","display":"Sabayanagam, Charumathi","role":"aut"},{"given":"Daniel S W","display":"Ting, Daniel S W","family":"Ting","role":"aut"},{"display":"Wang, Ya Xing","family":"Wang","role":"aut","given":"Ya Xing"},{"given":"Jost B.","role":"aut","family":"Jonas","display":"Jonas, Jost B."},{"given":"Sung Soo","display":"Kim, Sung Soo","family":"Kim","role":"aut"},{"role":"aut","display":"Wong, Tien Yin","family":"Wong","given":"Tien Yin"},{"given":"Ching-Yu","display":"Cheng, Ching-Yu","family":"Cheng","role":"aut"}],"recId":"1931404623","id":{"eki":["1931404623"],"doi":["10.1016/S2589-7500(20)30216-8"]},"origin":[{"dateIssuedDisp":"October 2020","dateIssuedKey":"2020"}],"name":{"displayForm":["Tyler Hyungtaek Rim, Geunyoung Lee, Youngnam Kim, Yih-Chung Tham, Chan Joo Lee, Su Jung Baik, Young Ah Kim, Marco Yu, Mihir Deshmukh, Byoung Kwon Lee, Sungha Park, Hyeon Chang Kim, Charumathi Sabayanagam, Daniel S W Ting, Ya Xing Wang, Jost B Jonas, Sung Soo Kim, Tien Yin Wong, Ching-Yu Cheng"]},"note":["Gesehen am 21.07.2025"],"title":[{"title":"Prediction of systemic biomarkers from retinal photographs","subtitle":"development and validation of deep-learning algorithms","title_sort":"Prediction of systemic biomarkers from retinal photographs"}],"physDesc":[{"noteIll":"Illustrationen","extent":"11 S."}],"language":["eng"]} 
SRT |a RIMTYLERHYPREDICTION2020