Blobbed topological recursion from extended loop equations

We consider the N×N Hermitian matrix model with measure dμE,λ(M)=1Zexp⁡(−λN4tr(M4))dμE,0(M), where dμE,0 is the Gaußian measure with covariance 〈MklMmn〉=δknδlmN(Ek+El) for given E1,...,EN>0. It was previously understood that this setting gives rise to two ramified coverings x,y of the Riemann sph...

Full description

Saved in:
Bibliographic Details
Main Authors: Hock, Alexander (Author) , Wulkenhaar, Raimar (Author)
Format: Article (Journal)
Language:English
Published: June 2025
In: Journal of geometry and physics
Year: 2025, Volume: 212, Pages: 1-32
DOI:10.1016/j.geomphys.2025.105457
Online Access:Verlag, kostenfrei, Volltext: https://doi.org/10.1016/j.geomphys.2025.105457
Verlag, kostenfrei, Volltext: https://www.sciencedirect.com/science/article/pii/S0393044025000415
Get full text
Author Notes:Alexander Hock, Raimar Wulkenhaar

MARC

LEADER 00000naa a2200000 c 4500
001 1931446377
003 DE-627
005 20250722102407.0
007 cr uuu---uuuuu
008 250722s2025 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.geomphys.2025.105457  |2 doi 
035 |a (DE-627)1931446377 
035 |a (DE-599)KXP1931446377 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Hock, Alexander  |d 1990-  |e VerfasserIn  |0 (DE-588)1212044673  |0 (DE-627)1700633414  |4 aut 
245 1 0 |a Blobbed topological recursion from extended loop equations  |c Alexander Hock, Raimar Wulkenhaar 
264 1 |c June 2025 
300 |a 32 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Online verfügbar 20 February 2025, Version des Artikels 27 February 2025 
500 |a Gesehen am 22.07.2025 
520 |a We consider the N×N Hermitian matrix model with measure dμE,λ(M)=1Zexp⁡(−λN4tr(M4))dμE,0(M), where dμE,0 is the Gaußian measure with covariance 〈MklMmn〉=δknδlmN(Ek+El) for given E1,...,EN>0. It was previously understood that this setting gives rise to two ramified coverings x,y of the Riemann sphere strongly tied by y(z)=−x(−z) and a family ωn(g) of meromorphic differentials conjectured to obey blobbed topological recursion due to Borot and Shadrin. We develop a new approach to this problem via a system of six meromorphic functions which satisfy extended loop equations. Two of these functions are symmetric in the preimages of x and can be determined from their consistency relations. An expansion at ∞ gives global linear and quadratic loop equations for the ωn(g). These global equations provide the ωn(g) not only in the vicinity of the ramification points of x but also in the vicinity of all other poles located at opposite diagonals zi+zj=0 and at zi=0. We deduce a recursion kernel representation valid at least for g≤1. 
650 4 |a (Blobbed) topological recursion 
650 4 |a Dyson-Schwinger equations 
650 4 |a Enumerative geometry 
650 4 |a Exactly solvable models 
650 4 |a Matrix models 
700 1 |a Wulkenhaar, Raimar  |d 1970-  |e VerfasserIn  |0 (DE-588)118016326  |0 (DE-627)694597589  |0 (DE-576)179127640  |4 aut 
773 0 8 |i Enthalten in  |t Journal of geometry and physics  |d Amsterdam [u.a.] : North-Holland, 1984  |g 212(2025) vom: Juni, Artikel-ID 105457, Seite 1-32  |h Online-Ressource  |w (DE-627)26601450X  |w (DE-600)1466516-5  |w (DE-576)074959697  |7 nnas  |a Blobbed topological recursion from extended loop equations 
773 1 8 |g volume:212  |g year:2025  |g month:06  |g elocationid:105457  |g pages:1-32  |g extent:32  |a Blobbed topological recursion from extended loop equations 
856 4 0 |u https://doi.org/10.1016/j.geomphys.2025.105457  |x Verlag  |x Resolving-System  |z kostenfrei  |3 Volltext 
856 4 0 |u https://www.sciencedirect.com/science/article/pii/S0393044025000415  |x Verlag  |z kostenfrei  |3 Volltext 
951 |a AR 
992 |a 20250722 
993 |a Article 
994 |a 2025 
998 |g 1212044673  |a Hock, Alexander  |m 1212044673:Hock, Alexander  |d 110000  |d 110400  |e 110000PH1212044673  |e 110400PH1212044673  |k 0/110000/  |k 1/110000/110400/  |p 1  |x j 
999 |a KXP-PPN1931446377  |e 474870635X 
BIB |a Y 
SER |a journal 
JSO |a {"type":{"media":"Online-Ressource","bibl":"article-journal"},"note":["Online verfügbar 20 February 2025, Version des Artikels 27 February 2025","Gesehen am 22.07.2025"],"language":["eng"],"recId":"1931446377","person":[{"role":"aut","roleDisplay":"VerfasserIn","display":"Hock, Alexander","given":"Alexander","family":"Hock"},{"role":"aut","display":"Wulkenhaar, Raimar","roleDisplay":"VerfasserIn","given":"Raimar","family":"Wulkenhaar"}],"title":[{"title":"Blobbed topological recursion from extended loop equations","title_sort":"Blobbed topological recursion from extended loop equations"}],"physDesc":[{"extent":"32 S."}],"relHost":[{"id":{"eki":["26601450X"],"zdb":["1466516-5"]},"origin":[{"publisher":"North-Holland","dateIssuedKey":"1984","dateIssuedDisp":"1984-","publisherPlace":"Amsterdam [u.a.]"}],"physDesc":[{"extent":"Online-Ressource"}],"title":[{"title":"Journal of geometry and physics","subtitle":"JGP","title_sort":"Journal of geometry and physics"}],"titleAlt":[{"title":"Geometry and physics"},{"title":"JGP"}],"part":{"extent":"32","text":"212(2025) vom: Juni, Artikel-ID 105457, Seite 1-32","volume":"212","pages":"1-32","year":"2025"},"pubHistory":["1.1984 - 62.2012; Vol. 63.2013 -"],"recId":"26601450X","language":["eng"],"disp":"Blobbed topological recursion from extended loop equationsJournal of geometry and physics","type":{"media":"Online-Ressource","bibl":"periodical"}}],"name":{"displayForm":["Alexander Hock, Raimar Wulkenhaar"]},"origin":[{"dateIssuedDisp":"June 2025","dateIssuedKey":"2025"}],"id":{"eki":["1931446377"],"doi":["10.1016/j.geomphys.2025.105457"]}} 
SRT |a HOCKALEXANBLOBBEDTOP2025