Diagnostic value of magnetic resonance imaging radiomics and machine-learning in grading soft tissue sarcoma: a mini-review on the current state

Soft tissue sarcomas (STS) are a heterogeneous group of rare malignant tumors. Tumor grade might be underestimated in biopsy due to intratumoral heterogeneity. This mini-review aims to present the current state of predicting malignancy grades of STS through radiomics, machine learning, and deep lear...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Schmitz, Fabian (VerfasserIn) , Sedaghat, Sam (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: January 2025
In: Academic radiology
Year: 2025, Jahrgang: 32, Heft: 1, Pages: 311-315
ISSN:1878-4046
DOI:10.1016/j.acra.2024.08.035
Online-Zugang:Verlag, kostenfrei, Volltext: https://doi.org/10.1016/j.acra.2024.08.035
Verlag, kostenfrei, Volltext: https://www.sciencedirect.com/science/article/pii/S1076633224005981
Volltext
Verfasserangaben:Fabian Schmitz, Sam Sedaghat

MARC

LEADER 00000naa a2200000 c 4500
001 1931684073
003 DE-627
005 20250724081550.0
007 cr uuu---uuuuu
008 250724s2025 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.acra.2024.08.035  |2 doi 
035 |a (DE-627)1931684073 
035 |a (DE-599)KXP1931684073 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Schmitz, Fabian  |e VerfasserIn  |0 (DE-588)1357675372  |0 (DE-627)1918585210  |4 aut 
245 1 0 |a Diagnostic value of magnetic resonance imaging radiomics and machine-learning in grading soft tissue sarcoma  |b a mini-review on the current state  |c Fabian Schmitz, Sam Sedaghat 
264 1 |c January 2025 
300 |b Illustrationen 
300 |a 5 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Online verfügbar: 10. September 2024, Artikelversion: 16. Januar 2025 
500 |a Gesehen am 24.07.2025 
520 |a Soft tissue sarcomas (STS) are a heterogeneous group of rare malignant tumors. Tumor grade might be underestimated in biopsy due to intratumoral heterogeneity. This mini-review aims to present the current state of predicting malignancy grades of STS through radiomics, machine learning, and deep learning on magnetic resonance imaging (MRI). Several studies investigated various machine-learning and deep-learning approaches in T2-weighted (w) images, contrast-enhanced (CE) T1w images, and DWI/ADC maps with promising results. Combining semantic imaging features, radiomics features, and deep-learning signatures in machine-learning models has demonstrated superior predictive performances compared to individual feature sources. Furthermore, incorporating features from both tumor volume and peritumor region is beneficial. Especially random forest and support vector machine classifiers, often combined with the least absolute shrinkage and selection operator (LASSO) and/or synthetic minority oversampling technique (SMOTE), did show high area under the curve (AUC) values and accuracies in existing studies. 
650 4 |a Deep learning 
650 4 |a Machine learning 
650 4 |a MRI 
650 4 |a Radiomics 
650 4 |a Soft tissue sarcoma 
700 1 |a Sedaghat, Sam  |d 1986-  |e VerfasserIn  |0 (DE-588)1074259270  |0 (DE-627)831927860  |0 (DE-576)441954480  |4 aut 
773 0 8 |i Enthalten in  |t Academic radiology  |d Philadelphia, PA [u.a.] : Elsevier, 1994  |g 32(2025), 1 vom: Jan., Seite 311-315  |h Online-Ressource  |w (DE-627)331018667  |w (DE-600)2050425-1  |w (DE-576)271497602  |x 1878-4046  |7 nnas  |a Diagnostic value of magnetic resonance imaging radiomics and machine-learning in grading soft tissue sarcoma a mini-review on the current state 
773 1 8 |g volume:32  |g year:2025  |g number:1  |g month:01  |g pages:311-315  |g extent:5  |a Diagnostic value of magnetic resonance imaging radiomics and machine-learning in grading soft tissue sarcoma a mini-review on the current state 
856 4 0 |u https://doi.org/10.1016/j.acra.2024.08.035  |x Verlag  |x Resolving-System  |z kostenfrei  |3 Volltext 
856 4 0 |u https://www.sciencedirect.com/science/article/pii/S1076633224005981  |x Verlag  |z kostenfrei  |3 Volltext 
951 |a AR 
992 |a 20250724 
993 |a Article 
994 |a 2025 
998 |g 1074259270  |a Sedaghat, Sam  |m 1074259270:Sedaghat, Sam  |d 910000  |d 911400  |e 910000PS1074259270  |e 911400PS1074259270  |k 0/910000/  |k 1/910000/911400/  |p 2  |y j 
998 |g 1357675372  |a Schmitz, Fabian  |m 1357675372:Schmitz, Fabian  |d 910000  |d 911400  |e 910000PS1357675372  |e 911400PS1357675372  |k 0/910000/  |k 1/910000/911400/  |p 1  |x j 
999 |a KXP-PPN1931684073  |e 474937850X 
BIB |a Y 
SER |a journal 
JSO |a {"type":{"bibl":"article-journal","media":"Online-Ressource"},"note":["Online verfügbar: 10. September 2024, Artikelversion: 16. Januar 2025","Gesehen am 24.07.2025"],"origin":[{"dateIssuedKey":"2025","dateIssuedDisp":"January 2025"}],"title":[{"title":"Diagnostic value of magnetic resonance imaging radiomics and machine-learning in grading soft tissue sarcoma","subtitle":"a mini-review on the current state","title_sort":"Diagnostic value of magnetic resonance imaging radiomics and machine-learning in grading soft tissue sarcoma"}],"id":{"eki":["1931684073"],"doi":["10.1016/j.acra.2024.08.035"]},"recId":"1931684073","relHost":[{"language":["eng"],"part":{"volume":"32","extent":"5","pages":"311-315","year":"2025","text":"32(2025), 1 vom: Jan., Seite 311-315","issue":"1"},"title":[{"title":"Academic radiology","title_sort":"Academic radiology","subtitle":"official journal of the Association of University Radiologists, the Society of Chairs of Academic Radiology Departments, the Association of Program Directors in Radiology, the American Alliance of Academic Chief Residents in Radiology, the Alliance of Medical Student Educators in Radiology, the Radiology Research Alliance, the Radiology Alliance for Health Services Research, and the Medical Image Computing and Computer-Assisted Intervention Society"}],"pubHistory":["1.1994 -"],"origin":[{"publisher":"Elsevier ; Assoc. of University Radiologists","dateIssuedKey":"1994","dateIssuedDisp":"1994-","publisherPlace":"Philadelphia, PA [u.a.] ; Oak Brook, Ill."}],"note":["Gesehen am 18.04.17"],"type":{"bibl":"periodical","media":"Online-Ressource"},"disp":"Diagnostic value of magnetic resonance imaging radiomics and machine-learning in grading soft tissue sarcoma a mini-review on the current stateAcademic radiology","physDesc":[{"extent":"Online-Ressource"}],"recId":"331018667","id":{"eki":["331018667"],"zdb":["2050425-1"],"issn":["1878-4046"]}}],"name":{"displayForm":["Fabian Schmitz, Sam Sedaghat"]},"physDesc":[{"extent":"5 S.","noteIll":"Illustrationen"}],"person":[{"role":"aut","given":"Fabian","family":"Schmitz","display":"Schmitz, Fabian"},{"family":"Sedaghat","display":"Sedaghat, Sam","given":"Sam","role":"aut"}],"language":["eng"]} 
SRT |a SCHMITZFABDIAGNOSTIC2025