Grappa: a machine learned molecular mechanics force field

Simulating large molecular systems over long timescales requires force fields that are both accurate and efficient. In recent years, E(3) equivariant neural networks have lifted the tension between computational efficiency and accuracy of force fields, but they are still several orders of magnitude...

Full description

Saved in:
Bibliographic Details
Main Authors: Seute, Leif (Author) , Hartmann, Eric (Author) , Stühmer, Jan (Author) , Gräter, Frauke (Author)
Format: Article (Journal)
Language:English
Published: 15 January 2025
In: Chemical science
Year: 2025, Volume: 16, Issue: 6, Pages: 2907-2930
ISSN:2041-6539
DOI:10.1039/D4SC05465B
Online Access:Verlag, kostenfrei, Volltext: https://doi.org/10.1039/D4SC05465B
Verlag, kostenfrei, Volltext: https://pubs.rsc.org/en/content/articlelanding/2025/sc/d4sc05465b
Get full text
Author Notes:Leif Seute, Eric Hartmann, Jan Stühmer, and Frauke Gräter

MARC

LEADER 00000naa a2200000 c 4500
001 1931874565
003 DE-627
005 20250728113957.0
007 cr uuu---uuuuu
008 250728s2025 xx |||||o 00| ||eng c
024 7 |a 10.1039/D4SC05465B  |2 doi 
035 |a (DE-627)1931874565 
035 |a (DE-599)KXP1931874565 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 30  |2 sdnb 
100 1 |a Seute, Leif  |e VerfasserIn  |0 (DE-588)1372574859  |0 (DE-627)1931876738  |4 aut 
245 1 0 |a Grappa: a machine learned molecular mechanics force field  |c Leif Seute, Eric Hartmann, Jan Stühmer, and Frauke Gräter 
264 1 |c 15 January 2025 
300 |b Illustrationen 
300 |a 24 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 28.07.2025 
520 |a Simulating large molecular systems over long timescales requires force fields that are both accurate and efficient. In recent years, E(3) equivariant neural networks have lifted the tension between computational efficiency and accuracy of force fields, but they are still several orders of magnitude more expensive than established molecular mechanics (MM) force fields. Here, we propose Grappa, a machine learning framework to predict MM parameters from the molecular graph, employing a graph attentional neural network and a transformer with symmetry-preserving positional encoding. The resulting Grappa force field outperforms tabulated and machine-learned MM force fields in terms of accuracy at the same computational efficiency and can be used in existing Molecular Dynamics (MD) engines like GROMACS and OpenMM. It predicts energies and forces of small molecules, peptides, and RNA at state-of-the-art MM accuracy, while also reproducing experimentally measured values for J-couplings. With its simple input features and high data-efficiency, Grappa is well suited for extensions to uncharted regions of chemical space, which we show on the example of peptide radicals. We demonstrate Grappa's transferability to macromolecules in MD simulations from a small fast-folding protein up to a whole virus particle. Our force field sets the stage for biomolecular simulations closer to chemical accuracy, but with the same computational cost as established protein force fields. 
700 1 |a Hartmann, Eric  |d 1996-  |e VerfasserIn  |0 (DE-588)137257543X  |0 (DE-627)1931877890  |4 aut 
700 1 |a Stühmer, Jan  |e VerfasserIn  |0 (DE-588)1372576959  |0 (DE-627)1931880956  |4 aut 
700 1 |a Gräter, Frauke  |e VerfasserIn  |0 (DE-588)130664871  |0 (DE-627)505296764  |0 (DE-576)298331314  |4 aut 
773 0 8 |i Enthalten in  |t Chemical science  |d Cambridge : RSC, 2010  |g 16(2025), 6, Seite 2907-2930  |h Online-Ressource  |w (DE-627)629702934  |w (DE-600)2559110-1  |w (DE-576)325003831  |x 2041-6539  |7 nnas  |a Grappa: a machine learned molecular mechanics force field 
773 1 8 |g volume:16  |g year:2025  |g number:6  |g pages:2907-2930  |g extent:24  |a Grappa: a machine learned molecular mechanics force field 
856 4 0 |u https://doi.org/10.1039/D4SC05465B  |x Verlag  |x Resolving-System  |z kostenfrei  |3 Volltext 
856 4 0 |u https://pubs.rsc.org/en/content/articlelanding/2025/sc/d4sc05465b  |x Verlag  |z kostenfrei  |3 Volltext 
951 |a AR 
992 |a 20250728 
993 |a Article 
994 |a 2025 
998 |g 130664871  |a Gräter, Frauke  |m 130664871:Gräter, Frauke  |d 160000  |e 160000PG130664871  |k 0/160000/  |p 4  |y j 
998 |g 1372576959  |a Stühmer, Jan  |m 1372576959:Stühmer, Jan  |p 3 
998 |g 137257543X  |a Hartmann, Eric  |m 137257543X:Hartmann, Eric  |d 160000  |e 160000PH137257543X  |k 0/160000/  |p 2 
998 |g 1372574859  |a Seute, Leif  |m 1372574859:Seute, Leif  |d 120000  |e 120000PS1372574859  |k 0/120000/  |p 1  |x j 
999 |a KXP-PPN1931874565  |e 4750058394 
BIB |a Y 
SER |a journal 
JSO |a {"type":{"bibl":"article-journal","media":"Online-Ressource"},"name":{"displayForm":["Leif Seute, Eric Hartmann, Jan Stühmer, and Frauke Gräter"]},"language":["eng"],"id":{"eki":["1931874565"],"doi":["10.1039/D4SC05465B"]},"physDesc":[{"noteIll":"Illustrationen","extent":"24 S."}],"title":[{"title":"Grappa: a machine learned molecular mechanics force field","title_sort":"Grappa: a machine learned molecular mechanics force field"}],"person":[{"family":"Seute","given":"Leif","display":"Seute, Leif","role":"aut"},{"family":"Hartmann","role":"aut","given":"Eric","display":"Hartmann, Eric"},{"given":"Jan","display":"Stühmer, Jan","role":"aut","family":"Stühmer"},{"family":"Gräter","display":"Gräter, Frauke","given":"Frauke","role":"aut"}],"origin":[{"dateIssuedDisp":"15 January 2025","dateIssuedKey":"2025"}],"note":["Gesehen am 28.07.2025"],"relHost":[{"pubHistory":["1.2010 -"],"origin":[{"publisherPlace":"Cambridge","dateIssuedKey":"2010","dateIssuedDisp":"2010-","publisher":"RSC"}],"note":["Gesehen am 04.11.25"],"recId":"629702934","name":{"displayForm":["RSC, Royal Society of Chemistry"]},"language":["eng"],"id":{"issn":["2041-6539"],"eki":["629702934"],"zdb":["2559110-1"]},"corporate":[{"role":"isb","display":"Royal Society of Chemistry"}],"type":{"bibl":"periodical","media":"Online-Ressource"},"disp":"Grappa: a machine learned molecular mechanics force fieldChemical science","physDesc":[{"extent":"Online-Ressource"}],"part":{"volume":"16","extent":"24","issue":"6","year":"2025","pages":"2907-2930","text":"16(2025), 6, Seite 2907-2930"},"title":[{"title_sort":"Chemical science","title":"Chemical science"}]}],"recId":"1931874565"} 
SRT |a SEUTELEIFHGRAPPAAMAC1520