Robust-DefReg: a robust coarse to fine non-rigid point cloud registration method based on graph convolutional neural networks : paper

Point cloud registration is a critical process in computer vision and measurement science, aimed at determining transformations between corresponding sets of points for accurate spatial alignment. In particular, non-rigid registration involves estimating flexible transformations that map a source po...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Monji Azad, Sara (VerfasserIn) , Kinz, Marvin (VerfasserIn) , Männle, David (VerfasserIn) , Scherl, Claudia (VerfasserIn) , Hesser, Jürgen (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 2025
In: Measurement science and technology
Year: 2025, Jahrgang: 36, Heft: 1, Pages: ?
ISSN:1361-6501
DOI:10.1088/1361-6501/ad916c
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1088/1361-6501/ad916c
Verlag, lizenzpflichtig, Volltext: https://dx.doi.org/10.1088/1361-6501/ad916c
Volltext
Verfasserangaben:Sara Monji-Azad, Marvin Kinz, David Männel, Claudia Scherl and Jürgen Hesser

MARC

LEADER 00000caa a22000002c 4500
001 193218192X
003 DE-627
005 20251106154255.0
007 cr uuu---uuuuu
008 250731s2025 xx |||||o 00| ||eng c
024 7 |a 10.1088/1361-6501/ad916c  |2 doi 
035 |a (DE-627)193218192X 
035 |a (DE-599)KXP193218192X 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Monji Azad, Sara  |d 1986-  |e VerfasserIn  |0 (DE-588)1283596660  |0 (DE-627)1839374969  |4 aut 
245 1 0 |a Robust-DefReg  |b a robust coarse to fine non-rigid point cloud registration method based on graph convolutional neural networks : paper  |c Sara Monji-Azad, Marvin Kinz, David Männel, Claudia Scherl and Jürgen Hesser 
264 1 |c 2025 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a In der Verantwortlichkeitsangabe ist der dritte Autor fälschlich als Männel angegeben 
500 |a Online veröffentlicht: 25. November 2024 
500 |a Gesehen am 31.07.2025 
520 |a Point cloud registration is a critical process in computer vision and measurement science, aimed at determining transformations between corresponding sets of points for accurate spatial alignment. In particular, non-rigid registration involves estimating flexible transformations that map a source point cloud to a target point cloud, even under conditions of stretching, compression, or other complex deformations. This task becomes especially challenging when addressing measurement-specific issues like varying degrees of deformation, noise, and outliers, all of which can impact measurement accuracy and reliability. This paper introduces Robust-DefReg, a novel method for non-rigid point cloud registration that applies graph convolutional networks (GCNNs) within a coarse-to-fine registration framework. This end-to-end pipeline harnesses global feature learning to establish robust correspondences and precise transformations, enabling high accuracy across different deformation scales and noise levels. A key contribution of Robust-DefReg is its demonstrated resilience to various challenges, such as substantial deformations, noise, and outliers, factors often underreported in existing registration literature. In addition, we present SynBench, a comprehensive benchmark dataset specifically designed for evaluating non-rigid point cloud registration in realistic measurement scenarios. Unlike previous datasets, SynBench incorporates a range of challenges, making it a valuable tool for the fair assessment of registration methods in measurement applications. Experimental results on SynBench and additional datasets show that Robust-DefReg consistently outperforms state-of-the-art methods, offering higher registration accuracy and robustness, even with up to 45% outliers. SynBench and the Robust-DefReg source code are publicly accessible for further research and development at https://doi.org/10.11588/data/R9IKCF and https://github.com/m-kinz/Robust-DefReg, respectively. 
700 1 |a Kinz, Marvin  |d 1998-  |e VerfasserIn  |0 (DE-588)1310791422  |0 (DE-627)1870898214  |4 aut 
700 1 |a Männle, David  |d 1988-  |e VerfasserIn  |0 (DE-588)1124103198  |0 (DE-627)87782603X  |0 (DE-576)48230300X  |4 aut 
700 1 |a Scherl, Claudia  |d 1977-  |e VerfasserIn  |0 (DE-588)132069555  |0 (DE-627)517465426  |0 (DE-576)298927101  |4 aut 
700 1 |a Hesser, Jürgen  |d 1964-  |e VerfasserIn  |0 (DE-588)1020647353  |0 (DE-627)691291071  |0 (DE-576)361513739  |4 aut 
773 0 8 |i Enthalten in  |t Measurement science and technology  |d Bristol : IOP Publ., 1990  |g 36(2025), 1, Artikel-ID 015426, Seite ?  |h Online-Ressource  |w (DE-627)225274744  |w (DE-600)1362523-8  |w (DE-576)077608003  |x 1361-6501  |7 nnas  |a Robust-DefReg a robust coarse to fine non-rigid point cloud registration method based on graph convolutional neural networks : paper 
773 1 8 |g volume:36  |g year:2025  |g number:1  |g elocationid:015426  |g pages:?  |a Robust-DefReg a robust coarse to fine non-rigid point cloud registration method based on graph convolutional neural networks : paper 
856 4 0 |u https://doi.org/10.1088/1361-6501/ad916c  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u https://dx.doi.org/10.1088/1361-6501/ad916c  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20250731 
993 |a Article 
994 |a 2025 
998 |g 1020647353  |a Hesser, Jürgen  |m 1020647353:Hesser, Jürgen  |d 60000  |d 65200  |d 60000  |e 60000PH1020647353  |e 65200PH1020647353  |e 60000PH1020647353  |k 0/60000/  |k 1/60000/65200/  |k 0/60000/  |p 5  |y j 
998 |g 132069555  |a Scherl, Claudia  |m 132069555:Scherl, Claudia  |d 60000  |d 62100  |e 60000PS132069555  |e 62100PS132069555  |k 0/60000/  |k 1/60000/62100/  |p 4 
998 |g 1124103198  |a Männle, David  |m 1124103198:Männle, David  |d 60000  |d 62100  |e 60000PM1124103198  |e 62100PM1124103198  |k 0/60000/  |k 1/60000/62100/  |p 3 
998 |g 1310791422  |a Kinz, Marvin  |m 1310791422:Kinz, Marvin  |d 130000  |e 130000PK1310791422  |k 0/130000/  |p 2 
998 |g 1283596660  |a Monji Azad, Sara  |m 1283596660:Monji Azad, Sara  |d 60000  |d 65200  |e 60000PM1283596660  |e 65200PM1283596660  |k 0/60000/  |k 1/60000/65200/  |p 1  |x j 
999 |a KXP-PPN193218192X  |e 4751142445 
BIB |a Y 
SER |a journal 
JSO |a {"person":[{"display":"Monji Azad, Sara","family":"Monji Azad","given":"Sara","role":"aut"},{"given":"Marvin","role":"aut","family":"Kinz","display":"Kinz, Marvin"},{"role":"aut","given":"David","family":"Männle","display":"Männle, David"},{"given":"Claudia","role":"aut","family":"Scherl","display":"Scherl, Claudia"},{"given":"Jürgen","role":"aut","family":"Hesser","display":"Hesser, Jürgen"}],"origin":[{"dateIssuedKey":"2025","dateIssuedDisp":"2025"}],"note":["In der Verantwortlichkeitsangabe ist der dritte Autor fälschlich als Männel angegeben","Online veröffentlicht: 25. November 2024","Gesehen am 31.07.2025"],"title":[{"title":"Robust-DefReg","subtitle":"a robust coarse to fine non-rigid point cloud registration method based on graph convolutional neural networks : paper","title_sort":"Robust-DefReg"}],"type":{"bibl":"article-journal","media":"Online-Ressource"},"language":["eng"],"name":{"displayForm":["Sara Monji-Azad, Marvin Kinz, David Männel, Claudia Scherl and Jürgen Hesser"]},"recId":"193218192X","id":{"doi":["10.1088/1361-6501/ad916c"],"eki":["193218192X"]},"relHost":[{"id":{"issn":["1361-6501"],"eki":["225274744"],"zdb":["1362523-8"]},"physDesc":[{"extent":"Online-Ressource"}],"recId":"225274744","pubHistory":["1.1990 -"],"part":{"volume":"36","text":"36(2025), 1, Artikel-ID 015426, Seite ?","pages":"?","issue":"1","year":"2025"},"note":["Gesehen am 02.12.20"],"origin":[{"dateIssuedKey":"1990","publisher":"IOP Publ.","publisherPlace":"Bristol","dateIssuedDisp":"1990-"}],"title":[{"title":"Measurement science and technology","subtitle":"devoted to the theory, practice and application of measurement in physics, chemistry, engineering and the environmental and life sciences from inception to commercial exploitation","title_sort":"Measurement science and technology"}],"type":{"bibl":"periodical","media":"Online-Ressource"},"language":["eng"],"disp":"Robust-DefReg a robust coarse to fine non-rigid point cloud registration method based on graph convolutional neural networks : paperMeasurement science and technology"}]} 
SRT |a MONJIAZADSROBUSTDEFR2025