Machine learning models featuring somatic and mental comorbidities for prolonged length-of-stay in a maximum care university hospital [code]

Abstract Background: Knowledge about the influencing factors on hospital in-patient length-of-stay is integral for optimizing care and resource planning. Existing studies on prolonged length-of-stay prediction choose a precise figure as threshold for the number of days that classifies the length-of-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Stahl-Toyota, Sophia (VerfasserIn) , Dönnhoff, Ivo (VerfasserIn) , Nagy, Ede (VerfasserIn) , Hochlehnert, Achim (VerfasserIn) , Bönsel, Stefan (VerfasserIn) , Unger, Inga (VerfasserIn) , Szendrödi, Julia (VerfasserIn) , Frey, Norbert (VerfasserIn) , Michl, Patrick (VerfasserIn) , Müller-Tidow, Carsten (VerfasserIn) , Jäger, Dirk (VerfasserIn) , Friederich, Hans-Christoph (VerfasserIn) , Nikendei, Christoph (VerfasserIn)
Dokumenttyp: Datenbank Forschungsdaten
Sprache:Englisch
Veröffentlicht: Heidelberg Universität 2025-06-27
DOI:10.11588/DATA/HP9O2J
Schlagworte:
Online-Zugang:Verlag, kostenfrei, Volltext: https://doi.org/10.11588/DATA/HP9O2J
Verlag, kostenfrei, Volltext: https://heidata.uni-heidelberg.de/dataset.xhtml?persistentId=doi:10.11588/DATA/HP9O2J
Volltext
Verfasserangaben:Sophia Stahl-Toyota, Ivo Dönnhoff, Ede Nagy, Achim Hochlehnert, Stefan Bönsel, Inga Unger, Julia Szendrödi, Norbert Frey, Patrick Michl, Carsten Müller-Tidow, Dirk Jäger, Hans-Christoph Friederich, Christoph Nikendei

MARC

LEADER 00000nmi a2200000 c 4500
001 1932803343
003 DE-627
005 20250807112459.0
006 su| d|o |0 |0
007 cr uuu---uuuuu
008 250807c20259999xx |o | eng c
024 7 |a 10.11588/DATA/HP9O2J  |2 doi 
035 |a (DE-627)1932803343 
035 |a (DE-599)KXP1932803343 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 11  |2 sdnb 
100 1 |a Stahl-Toyota, Sophia  |e VerfasserIn  |0 (DE-588)1294099566  |0 (DE-627)1851056106  |4 aut 
245 1 0 |a Machine learning models featuring somatic and mental comorbidities for prolonged length-of-stay in a maximum care university hospital [code]  |c Sophia Stahl-Toyota, Ivo Dönnhoff, Ede Nagy, Achim Hochlehnert, Stefan Bönsel, Inga Unger, Julia Szendrödi, Norbert Frey, Patrick Michl, Carsten Müller-Tidow, Dirk Jäger, Hans-Christoph Friederich, Christoph Nikendei 
264 1 |a Heidelberg  |b Universität  |c 2025-06-27 
300 |a 1 Online-Ressource (3 Files) 
336 |a Text  |b txt  |2 rdacontent 
336 |a Computerdaten  |b cod  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 07.08.2025 
520 |a Abstract Background: Knowledge about the influencing factors on hospital in-patient length-of-stay is integral for optimizing care and resource planning. Existing studies on prolonged length-of-stay prediction choose a precise figure as threshold for the number of days that classifies the length-of-stay as prolonged and base the analysis on either a large and diverse sample or a very specific cohort. Most studies take somatic comorbidities into account, while only a subset incorporates mental comorbidities, with varying definitions of the composition of comorbidity subgroups. Objectives: (I) After which timeframe does the number of days of inpatient treatment indicate a prolonged length-of-stay if the threshold for outliers is computed department-wise in a maximum care internal medicine university hospital? (II) How accurate can machine learning models predict prolonged length-of-stay in internal medicine patients? (III) Which mental and somatic comorbidities have the strongest influence on length-of-stay prediction? Methods: From six internal medicine departments at the German University Hospital in Heidelberg, a total of N=28,536 cases treated in the years 2017 to 2019 comprised the study population for which a department-level threshold for prolonged length-of-stay was computed. For each of the six departments, four machine learning models were built that were based on the prolonged length-of-stay classification on variables derived from demographics and mental as well as somatic comorbidities. Results: Length-of-stay was classified as prolonged if the number of days at the hospital equaled or exceeded 9 (Cardiology), 10 (General and Psychosomatics, Gastroenterology, Medical Oncology), 11 (Endocrinology) or 26 (Hematology). With Area under the Receiver Operator Curve (AUROC)=0.89 the random forest for the Department of Hematology had the highest predictive power, the random forest for the Department of General and Psychosomatic with AUROC=0.72 the lowest. The variables with strongest influence on the prediction comprised the number of somatic comorbidities, the age at diagnosis, mental and somatic comorbidity subgroups. Among the mental comorbidities, stress-related adjustment disorder was the most prominent factor. Conclusions: Consideration of department-level factors is recommended for prolonged length-of-stay prediction models. Mental as well as somatic comorbidities were among the most relevant factors for the prediction of prolonged length-of-stay and require adequate treatment and reimbursement opportunities. 
650 4 |a Computer and Information Science 
650 4 |a Health and Life Sciences 
650 4 |a Medicine 
655 7 |a Forschungsdaten  |0 (DE-588)1098579690  |0 (DE-627)857755366  |0 (DE-576)469182156  |2 gnd-content 
655 7 |a Datenbank  |0 (DE-588)4011119-2  |0 (DE-627)106354256  |0 (DE-576)208891943  |2 gnd-content 
700 1 |a Dönnhoff, Ivo  |d 1991-  |e VerfasserIn  |0 (DE-588)1275342892  |0 (DE-627)1826823948  |4 aut 
700 1 |a Nagy, Ede  |d 1976-  |e VerfasserIn  |0 (DE-588)1076995608  |0 (DE-627)835535584  |0 (DE-576)314946055  |4 aut 
700 1 |a Hochlehnert, Achim  |d 1972-  |e VerfasserIn  |0 (DE-588)121857808  |0 (DE-627)705680061  |0 (DE-576)292921926  |4 aut 
700 1 |a Bönsel, Stefan  |e VerfasserIn  |4 aut 
700 1 |a Unger, Inga  |e VerfasserIn  |0 (DE-588)1299588980  |0 (DE-627)1856526461  |4 aut 
700 1 |a Szendrödi, Julia  |e VerfasserIn  |0 (DE-588)1226436463  |0 (DE-627)1747448249  |4 aut 
700 1 |a Frey, Norbert  |e VerfasserIn  |0 (DE-588)141244976  |0 (DE-627)625824075  |0 (DE-576)322969514  |4 aut 
700 1 |a Michl, Patrick  |d 1971-  |e VerfasserIn  |0 (DE-588)121336328  |0 (DE-627)081239203  |0 (DE-576)292654677  |4 aut 
700 1 |a Müller-Tidow, Carsten  |d 1968-  |e VerfasserIn  |0 (DE-588)1015101798  |0 (DE-627)705330230  |0 (DE-576)351197893  |4 aut 
700 1 |a Jäger, Dirk  |d 1964-  |e VerfasserIn  |0 (DE-588)1032507535  |0 (DE-627)738505323  |0 (DE-576)380074125  |4 aut 
700 1 |a Friederich, Hans-Christoph  |d 1971-  |e VerfasserIn  |0 (DE-588)122302524  |0 (DE-627)70585311X  |0 (DE-576)293208417  |4 aut 
700 1 |a Nikendei, Christoph  |d 1971-  |e VerfasserIn  |0 (DE-588)123417023  |0 (DE-627)08254350X  |0 (DE-576)184450977  |4 aut 
856 4 0 |u https://doi.org/10.11588/DATA/HP9O2J  |x Verlag  |x Resolving-System  |z kostenfrei  |3 Volltext 
856 4 0 |u https://heidata.uni-heidelberg.de/dataset.xhtml?persistentId=doi:10.11588/DATA/HP9O2J  |x Verlag  |z kostenfrei  |3 Volltext 
951 |a BO 
992 |a 20250807 
993 |a ResearchData 
994 |a 2025 
998 |g 123417023  |a Nikendei, Christoph  |m 123417023:Nikendei, Christoph  |d 910000  |d 910100  |d 50000  |e 910000PN123417023  |e 910100PN123417023  |e 50000PN123417023  |k 0/910000/  |k 1/910000/910100/  |k 0/50000/  |p 13  |y j 
998 |g 122302524  |a Friederich, Hans-Christoph  |m 122302524:Friederich, Hans-Christoph  |d 910000  |d 910100  |e 910000PF122302524  |e 910100PF122302524  |k 0/910000/  |k 1/910000/910100/  |p 12 
998 |g 1032507535  |a Jäger, Dirk  |m 1032507535:Jäger, Dirk  |d 50000  |e 50000PJ1032507535  |k 0/50000/  |p 11 
998 |g 1015101798  |a Müller-Tidow, Carsten  |m 1015101798:Müller-Tidow, Carsten  |d 910000  |d 910100  |e 910000PM1015101798  |e 910100PM1015101798  |k 0/910000/  |k 1/910000/910100/  |p 10 
998 |g 121336328  |a Michl, Patrick  |m 121336328:Michl, Patrick  |d 910000  |d 910100  |e 910000PM121336328  |e 910100PM121336328  |k 0/910000/  |k 1/910000/910100/  |p 9 
998 |g 141244976  |a Frey, Norbert  |m 141244976:Frey, Norbert  |d 910000  |d 910100  |e 910000PF141244976  |e 910100PF141244976  |k 0/910000/  |k 1/910000/910100/  |p 8 
998 |g 1226436463  |a Szendrödi, Julia  |m 1226436463:Szendrödi, Julia  |d 910000  |d 910100  |e 910000PS1226436463  |e 910100PS1226436463  |k 0/910000/  |k 1/910000/910100/  |p 7 
998 |g 121857808  |a Hochlehnert, Achim  |m 121857808:Hochlehnert, Achim  |d 50000  |e 50000PH121857808  |k 0/50000/  |p 4 
998 |g 1076995608  |a Nagy, Ede  |m 1076995608:Nagy, Ede  |d 910000  |d 910100  |e 910000PN1076995608  |e 910100PN1076995608  |k 0/910000/  |k 1/910000/910100/  |p 3 
998 |g 1275342892  |a Dönnhoff, Ivo  |m 1275342892:Dönnhoff, Ivo  |d 910000  |d 910100  |e 910000PD1275342892  |e 910100PD1275342892  |k 0/910000/  |k 1/910000/910100/  |p 2 
998 |g 1294099566  |a Stahl-Toyota, Sophia  |m 1294099566:Stahl-Toyota, Sophia  |d 910000  |d 910100  |e 910000PS1294099566  |e 910100PS1294099566  |k 0/910000/  |k 1/910000/910100/  |p 1  |x j 
999 |a KXP-PPN1932803343  |e 4754929675 
BIB |a Y 
JSO |a {"title":[{"title_sort":"Machine learning models featuring somatic and mental comorbidities for prolonged length-of-stay in a maximum care university hospital [code]","title":"Machine learning models featuring somatic and mental comorbidities for prolonged length-of-stay in a maximum care university hospital [code]"}],"language":["eng"],"name":{"displayForm":["Sophia Stahl-Toyota, Ivo Dönnhoff, Ede Nagy, Achim Hochlehnert, Stefan Bönsel, Inga Unger, Julia Szendrödi, Norbert Frey, Patrick Michl, Carsten Müller-Tidow, Dirk Jäger, Hans-Christoph Friederich, Christoph Nikendei"]},"origin":[{"publisher":"Universität","dateIssuedDisp":"2025-06-27","dateIssuedKey":"2025","publisherPlace":"Heidelberg"}],"recId":"1932803343","person":[{"given":"Sophia","display":"Stahl-Toyota, Sophia","family":"Stahl-Toyota","role":"aut"},{"role":"aut","given":"Ivo","display":"Dönnhoff, Ivo","family":"Dönnhoff"},{"family":"Nagy","display":"Nagy, Ede","given":"Ede","role":"aut"},{"family":"Hochlehnert","given":"Achim","display":"Hochlehnert, Achim","role":"aut"},{"family":"Bönsel","given":"Stefan","display":"Bönsel, Stefan","role":"aut"},{"given":"Inga","display":"Unger, Inga","family":"Unger","role":"aut"},{"given":"Julia","display":"Szendrödi, Julia","family":"Szendrödi","role":"aut"},{"family":"Frey","given":"Norbert","display":"Frey, Norbert","role":"aut"},{"given":"Patrick","display":"Michl, Patrick","family":"Michl","role":"aut"},{"role":"aut","family":"Müller-Tidow","display":"Müller-Tidow, Carsten","given":"Carsten"},{"role":"aut","family":"Jäger","given":"Dirk","display":"Jäger, Dirk"},{"given":"Hans-Christoph","display":"Friederich, Hans-Christoph","family":"Friederich","role":"aut"},{"family":"Nikendei","display":"Nikendei, Christoph","given":"Christoph","role":"aut"}],"note":["Gesehen am 07.08.2025"],"id":{"doi":["10.11588/DATA/HP9O2J"],"eki":["1932803343"]},"type":{"bibl":"dataset","media":"Online-Ressource"},"physDesc":[{"extent":"1 Online-Ressource (3 Files)"}]} 
SRT |a STAHLTOYOTMACHINELEA2025