CaloDREAM - detector response emulation via attentive flow matching

Detector simulations are an exciting application of modern generative networks. Their sparse high-dimensional data combined with the required precision poses a serious challenge. We show how combining Conditional Flow Matching with transformer elements allows us to simulate the detector phase space...

Full description

Saved in:
Bibliographic Details
Main Authors: Favaro, Luigi (Author) , Ore, Ayodele (Author) , Palacios Schweitzer, Sofia (Author) , Plehn, Tilman (Author)
Format: Article (Journal)
Language:English
Published: 11 March 2025
In: SciPost physics
Year: 2025, Volume: 18, Issue: 3, Pages: 1-26
ISSN:2542-4653
DOI:10.21468/SciPostPhys.18.3.088
Online Access:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.21468/SciPostPhys.18.3.088
Verlag, lizenzpflichtig, Volltext: https://scipost.org/10.21468/SciPostPhys.18.3.088
Get full text
Author Notes:Luigi Favaro, Ayodele Ore, Sofia Palacios Schweitzer and Tilman Plehn
Description
Summary:Detector simulations are an exciting application of modern generative networks. Their sparse high-dimensional data combined with the required precision poses a serious challenge. We show how combining Conditional Flow Matching with transformer elements allows us to simulate the detector phase space reliably. Namely, we use an autoregressive transformer to simulate the energy of each layer, and a vision transformer for the high-dimensional voxel distributions. We show how dimension reduction via latent diffusion allows us to train more efficiently and how diffusion networks can be evaluated faster with bespoke solvers. We showcase our framework, CaloDREAM, on datasets 2 and 3 of the CaloChallenge.
Item Description:Gesehen am 07.08.2025
Physical Description:Online Resource
ISSN:2542-4653
DOI:10.21468/SciPostPhys.18.3.088