Classifying binary black holes from Population III stars with the Einstein Telescope: a machine-learning approach

Third-generation (3G) gravitational-wave detectors such as the Einstein Telescope (ET) will observe binary black hole (BBH) mergers at redshifts up to <i>z<i/> ∼ 100. However, an unequivocal determination of the origin of high-redshift sources will remain uncertain because of the low sig...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Santoliquido, Filippo (VerfasserIn) , Dupletsa, Ulyana (VerfasserIn) , Tissino, Jacopo (VerfasserIn) , Branchesi, Marica (VerfasserIn) , Iacovelli, Francesco (VerfasserIn) , Iorio, Giuliano (VerfasserIn) , Mapelli, Michela (VerfasserIn) , Gerosa, Davide (VerfasserIn) , Harms, Jan (VerfasserIn) , Pasquato, Mario (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 22 October 2024
In: Astronomy and astrophysics
Year: 2024, Jahrgang: 690, Pages: 1-14
ISSN:1432-0746
DOI:10.1051/0004-6361/202450381
Online-Zugang:Verlag, kostenfrei, Volltext: https://doi.org/10.1051/0004-6361/202450381
Verlag, kostenfrei, Volltext: https://www.aanda.org/articles/aa/abs/2024/10/aa50381-24/aa50381-24.html
Volltext
Verfasserangaben:Filippo Santoliquido, Ulyana Dupletsa, Jacopo Tissino, Marica Branchesi, Francesco Iacovelli, Giuliano Iorio, Michela Mapelli, Davide Gerosa, Jan Harms, and Mario Pasquato

MARC

LEADER 00000naa a2200000 c 4500
001 1932819037
003 DE-627
005 20250807140049.0
007 cr uuu---uuuuu
008 250807s2024 xx |||||o 00| ||eng c
024 7 |a 10.1051/0004-6361/202450381  |2 doi 
035 |a (DE-627)1932819037 
035 |a (DE-599)KXP1932819037 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 29  |2 sdnb 
100 1 |a Santoliquido, Filippo  |e VerfasserIn  |0 (DE-588)1299934633  |0 (DE-627)1857660528  |4 aut 
245 1 0 |a Classifying binary black holes from Population III stars with the Einstein Telescope  |b a machine-learning approach  |c Filippo Santoliquido, Ulyana Dupletsa, Jacopo Tissino, Marica Branchesi, Francesco Iacovelli, Giuliano Iorio, Michela Mapelli, Davide Gerosa, Jan Harms, and Mario Pasquato 
264 1 |c 22 October 2024 
300 |b Illustrationen 
300 |a 14 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 07.08.2025 
520 |a Third-generation (3G) gravitational-wave detectors such as the Einstein Telescope (ET) will observe binary black hole (BBH) mergers at redshifts up to <i>z<i/> ∼ 100. However, an unequivocal determination of the origin of high-redshift sources will remain uncertain because of the low signal-to-noise ratio (S/N) and poor estimate of their luminosity distance. This study proposes a machine-learning approach to infer the origins of high-redshift BBHs. We specifically differentiate those arising from Population III (Pop. III) stars, which probably are the first progenitors of star-born BBH mergers in the Universe, and those originated from Population I-II (Pop. I-II) stars. We considered a wide range of models that encompass the current uncertainties on Pop. III BBH mergers. We then estimated the parameter errors of the detected sources with ET using the Fisher information-matrix formalism, followed by a classification using XGBOOST, which is a machine-learning algorithm based on decision trees. For a set of mock observed BBHs, we provide the probability that they belong to the Pop. III class while considering the parameter errors of each source. In our fiducial model, we accurately identify ≳10% of the detected BBHs that originate from Pop. III stars with a precision > 90%. Our study demonstrates that machine-learning enables us to achieve some pivotal aspects of the ET science case by exploring the origin of individual high-redshift GW observations. We set the basis for further studies, which will integrate additional simulated populations and account for further uncertainties in the population modeling. 
700 1 |a Dupletsa, Ulyana  |e VerfasserIn  |4 aut 
700 1 |a Tissino, Jacopo  |e VerfasserIn  |4 aut 
700 1 |a Branchesi, Marica  |e VerfasserIn  |4 aut 
700 1 |a Iacovelli, Francesco  |e VerfasserIn  |4 aut 
700 1 |a Iorio, Giuliano  |e VerfasserIn  |4 aut 
700 1 |a Mapelli, Michela  |e VerfasserIn  |0 (DE-588)1241482039  |0 (DE-627)1770939504  |4 aut 
700 1 |a Gerosa, Davide  |e VerfasserIn  |4 aut 
700 1 |a Harms, Jan  |e VerfasserIn  |4 aut 
700 1 |a Pasquato, Mario  |e VerfasserIn  |4 aut 
773 0 8 |i Enthalten in  |t Astronomy and astrophysics  |d Les Ulis : EDP Sciences, 1969  |g 690(2024) vom: Okt., Artikel-ID A362, Seite 1-14  |h Online-Ressource  |w (DE-627)253390222  |w (DE-600)1458466-9  |w (DE-576)072283351  |x 1432-0746  |7 nnas  |a Classifying binary black holes from Population III stars with the Einstein Telescope a machine-learning approach 
773 1 8 |g volume:690  |g year:2024  |g month:10  |g elocationid:A362  |g pages:1-14  |g extent:14  |a Classifying binary black holes from Population III stars with the Einstein Telescope a machine-learning approach 
856 4 0 |u https://doi.org/10.1051/0004-6361/202450381  |x Verlag  |x Resolving-System  |z kostenfrei  |3 Volltext 
856 4 0 |u https://www.aanda.org/articles/aa/abs/2024/10/aa50381-24/aa50381-24.html  |x Verlag  |z kostenfrei  |3 Volltext 
951 |a AR 
992 |a 20250807 
993 |a Article 
994 |a 2024 
998 |g 1241482039  |a Mapelli, Michela  |m 1241482039:Mapelli, Michela  |d 700000  |d 714000  |d 714200  |e 700000PM1241482039  |e 714000PM1241482039  |e 714200PM1241482039  |k 0/700000/  |k 1/700000/714000/  |k 2/700000/714000/714200/  |p 7 
999 |a KXP-PPN1932819037  |e 4754968816 
BIB |a Y 
SER |a journal 
JSO |a {"person":[{"family":"Santoliquido","display":"Santoliquido, Filippo","role":"aut","given":"Filippo"},{"given":"Ulyana","role":"aut","display":"Dupletsa, Ulyana","family":"Dupletsa"},{"family":"Tissino","display":"Tissino, Jacopo","role":"aut","given":"Jacopo"},{"family":"Branchesi","display":"Branchesi, Marica","role":"aut","given":"Marica"},{"display":"Iacovelli, Francesco","family":"Iacovelli","role":"aut","given":"Francesco"},{"given":"Giuliano","role":"aut","display":"Iorio, Giuliano","family":"Iorio"},{"family":"Mapelli","display":"Mapelli, Michela","given":"Michela","role":"aut"},{"role":"aut","given":"Davide","family":"Gerosa","display":"Gerosa, Davide"},{"given":"Jan","role":"aut","family":"Harms","display":"Harms, Jan"},{"display":"Pasquato, Mario","family":"Pasquato","given":"Mario","role":"aut"}],"language":["eng"],"type":{"bibl":"article-journal","media":"Online-Ressource"},"title":[{"title":"Classifying binary black holes from Population III stars with the Einstein Telescope","subtitle":"a machine-learning approach","title_sort":"Classifying binary black holes from Population III stars with the Einstein Telescope"}],"note":["Gesehen am 07.08.2025"],"origin":[{"dateIssuedKey":"2024","dateIssuedDisp":"22 October 2024"}],"id":{"doi":["10.1051/0004-6361/202450381"],"eki":["1932819037"]},"recId":"1932819037","relHost":[{"id":{"zdb":["1458466-9"],"issn":["1432-0746"],"eki":["253390222"]},"physDesc":[{"extent":"Online-Ressource"}],"name":{"displayForm":["European Southern Observatory (ESO)"]},"recId":"253390222","disp":"Classifying binary black holes from Population III stars with the Einstein Telescope a machine-learning approachAstronomy and astrophysics","type":{"media":"Online-Ressource","bibl":"periodical"},"title":[{"title":"Astronomy and astrophysics","subtitle":"an international weekly journal","title_sort":"Astronomy and astrophysics"}],"origin":[{"dateIssuedDisp":"1969-","dateIssuedKey":"1969","publisher":"EDP Sciences ; Springer","publisherPlace":"Les Ulis ; Berlin ; Heidelberg"}],"note":["Gesehen am 21.06.2024","Erscheint 36mal jährlich in 12 Bänden zu je 3 Ausgaben","Fortsetzung der Druck-Ausgabe"],"pubHistory":["1.1969 -"],"titleAlt":[{"title":"Astronomy & astrophysics"},{"title":"a European journal"}],"part":{"pages":"1-14","year":"2024","volume":"690","extent":"14","text":"690(2024) vom: Okt., Artikel-ID A362, Seite 1-14"},"language":["eng"],"corporate":[{"display":"European Southern Observatory","role":"isb"}]}],"physDesc":[{"extent":"14 S.","noteIll":"Illustrationen"}],"name":{"displayForm":["Filippo Santoliquido, Ulyana Dupletsa, Jacopo Tissino, Marica Branchesi, Francesco Iacovelli, Giuliano Iorio, Michela Mapelli, Davide Gerosa, Jan Harms, and Mario Pasquato"]}} 
SRT |a SANTOLIQUICLASSIFYIN2220