A duality result about special functions for Drinfeld modules of arbitrary rank
In the setting of a Drinfeld module φ over a curve X /Fq, we use a functorial point of view to define Anderson eigenvectors, a generalization of the so-called “special functions” introduced by Anglès, Ngo Dac and Tavares Ribeiro, and prove the existence of a universal object ω φ . We adopt an analo...
Gespeichert in:
| 1. Verfasser: | |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
12 March 2025
|
| In: |
Research in the mathematical sciences
Year: 2025, Jahrgang: 12, Heft: 2, Pages: 1-41 |
| ISSN: | 2197-9847 |
| DOI: | 10.1007/s40687-025-00506-w |
| Online-Zugang: | Verlag, kostenfrei, Volltext: https://doi.org/10.1007/s40687-025-00506-w Verlag, kostenfrei, Volltext: https://link.springer.com/article/10.1007/s40687-025-00506-w |
| Verfasserangaben: | Giacomo Hermes Ferraro |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 193282197X | ||
| 003 | DE-627 | ||
| 005 | 20250811154547.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 250807s2025 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.1007/s40687-025-00506-w |2 doi | |
| 035 | |a (DE-627)193282197X | ||
| 035 | |a (DE-599)KXP193282197X | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 27 |2 sdnb | ||
| 100 | 1 | |a Ferraro, Giacomo Hermes |e VerfasserIn |0 (DE-588)1373339152 |0 (DE-627)1932823441 |4 aut | |
| 245 | 1 | 2 | |a A duality result about special functions for Drinfeld modules of arbitrary rank |c Giacomo Hermes Ferraro |
| 264 | 1 | |c 12 March 2025 | |
| 300 | |a 41 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Gesehen am 07.08.2025 | ||
| 520 | |a In the setting of a Drinfeld module φ over a curve X /Fq, we use a functorial point of view to define Anderson eigenvectors, a generalization of the so-called “special functions” introduced by Anglès, Ngo Dac and Tavares Ribeiro, and prove the existence of a universal object ω φ . We adopt an analogous approach with the adjoint Drinfeld module φ∗ to define dual Anderson eigenvectors. The universal object of this functor, denoted by ζ φ , is a generalization of Pellarin zeta functions, can be expressed as an Eisenstein-like series over the period lattice, and its coordinates are analytic functions from X (C∞) \ {∞} to C∞. For all integers i, we define dot products ζ φ · ω(i) φ as certain meromorphic differential forms over XC∞ \ {∞} and prove they are actually rational. This amounts to a generalization of Pellarin’s identity for the Carlitz module and is linked to the pairing of the A-motive and the dual A-motive defined by Hartl and Juschka. Finally, we develop an algorithm to compute the forms ζ φ · ω(i) φ when X = P1 and prove a conjecture of Gazda and Maurischat about the invertibility of special functions for Drinfeld modules of rank 1. | ||
| 650 | 4 | |a Anderson modules | |
| 650 | 4 | |a Associative Rings and Algebras | |
| 650 | 4 | |a Category Theory, Homological Algebra | |
| 650 | 4 | |a Commutative Rings and Algebras | |
| 650 | 4 | |a Drinfeld modules | |
| 650 | 4 | |a Functions of a Complex Variable | |
| 650 | 4 | |a Pellarin L-series | |
| 650 | 4 | |a Several Complex Variables and Analytic Spaces | |
| 650 | 4 | |a Shtuka functions | |
| 650 | 4 | |a Special functions | |
| 650 | 4 | |a Special Functions | |
| 773 | 0 | 8 | |i Enthalten in |t Research in the mathematical sciences |d New York, NY [u.a.] : Springer, 2014 |g 12(2025), 2, Artikel-ID 23, Seite 1-41 |h Online-Ressource |w (DE-627)815914725 |w (DE-600)2806676-5 |w (DE-576)425059987 |x 2197-9847 |7 nnas |a A duality result about special functions for Drinfeld modules of arbitrary rank |
| 773 | 1 | 8 | |g volume:12 |g year:2025 |g number:2 |g elocationid:23 |g pages:1-41 |g extent:41 |a A duality result about special functions for Drinfeld modules of arbitrary rank |
| 856 | 4 | 0 | |u https://doi.org/10.1007/s40687-025-00506-w |x Verlag |x Resolving-System |z kostenfrei |3 Volltext |
| 856 | 4 | 0 | |u https://link.springer.com/article/10.1007/s40687-025-00506-w |x Verlag |z kostenfrei |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20250807 | ||
| 993 | |a Article | ||
| 994 | |a 2025 | ||
| 998 | |g 1373339152 |a Ferraro, Giacomo Hermes |m 1373339152:Ferraro, Giacomo Hermes |d 500000 |d 510326 |e 500000PF1373339152 |e 510326PF1373339152 |k 0/500000/ |k 1/500000/510326/ |p 1 |x j |y j | ||
| 999 | |a KXP-PPN193282197X |e 4754975014 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"type":{"bibl":"article-journal","media":"Online-Ressource"},"note":["Gesehen am 07.08.2025"],"language":["eng"],"recId":"193282197X","person":[{"roleDisplay":"VerfasserIn","display":"Ferraro, Giacomo Hermes","role":"aut","family":"Ferraro","given":"Giacomo Hermes"}],"title":[{"title":"A duality result about special functions for Drinfeld modules of arbitrary rank","title_sort":"duality result about special functions for Drinfeld modules of arbitrary rank"}],"physDesc":[{"extent":"41 S."}],"relHost":[{"part":{"year":"2025","issue":"2","pages":"1-41","text":"12(2025), 2, Artikel-ID 23, Seite 1-41","volume":"12","extent":"41"},"pubHistory":["1.2014 -"],"language":["eng"],"recId":"815914725","type":{"bibl":"periodical","media":"Online-Ressource"},"disp":"A duality result about special functions for Drinfeld modules of arbitrary rankResearch in the mathematical sciences","note":["Gesehen am 09.02.2015"],"title":[{"title":"Research in the mathematical sciences","title_sort":"Research in the mathematical sciences"}],"physDesc":[{"extent":"Online-Ressource"}],"id":{"zdb":["2806676-5"],"eki":["815914725"],"issn":["2197-9847"]},"origin":[{"publisher":"Springer","dateIssuedKey":"2014","dateIssuedDisp":"2014-","publisherPlace":"New York, NY [u.a.]"}]}],"name":{"displayForm":["Giacomo Hermes Ferraro"]},"origin":[{"dateIssuedKey":"2025","dateIssuedDisp":"12 March 2025"}],"id":{"doi":["10.1007/s40687-025-00506-w"],"eki":["193282197X"]}} | ||
| SRT | |a FERRAROGIADUALITYRES1220 | ||