A duality result about special functions for Drinfeld modules of arbitrary rank

In the setting of a Drinfeld module φ over a curve X /Fq, we use a functorial point of view to define Anderson eigenvectors, a generalization of the so-called “special functions” introduced by Anglès, Ngo Dac and Tavares Ribeiro, and prove the existence of a universal object ω φ . We adopt an analo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Ferraro, Giacomo Hermes (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 12 March 2025
In: Research in the mathematical sciences
Year: 2025, Jahrgang: 12, Heft: 2, Pages: 1-41
ISSN:2197-9847
DOI:10.1007/s40687-025-00506-w
Online-Zugang:Verlag, kostenfrei, Volltext: https://doi.org/10.1007/s40687-025-00506-w
Verlag, kostenfrei, Volltext: https://link.springer.com/article/10.1007/s40687-025-00506-w
Volltext
Verfasserangaben:Giacomo Hermes Ferraro

MARC

LEADER 00000caa a2200000 c 4500
001 193282197X
003 DE-627
005 20250811154547.0
007 cr uuu---uuuuu
008 250807s2025 xx |||||o 00| ||eng c
024 7 |a 10.1007/s40687-025-00506-w  |2 doi 
035 |a (DE-627)193282197X 
035 |a (DE-599)KXP193282197X 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Ferraro, Giacomo Hermes  |e VerfasserIn  |0 (DE-588)1373339152  |0 (DE-627)1932823441  |4 aut 
245 1 2 |a A duality result about special functions for Drinfeld modules of arbitrary rank  |c Giacomo Hermes Ferraro 
264 1 |c 12 March 2025 
300 |a 41 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 07.08.2025 
520 |a In the setting of a Drinfeld module φ over a curve X /Fq, we use a functorial point of view to define Anderson eigenvectors, a generalization of the so-called “special functions” introduced by Anglès, Ngo Dac and Tavares Ribeiro, and prove the existence of a universal object ω φ . We adopt an analogous approach with the adjoint Drinfeld module φ∗ to define dual Anderson eigenvectors. The universal object of this functor, denoted by ζ φ , is a generalization of Pellarin zeta functions, can be expressed as an Eisenstein-like series over the period lattice, and its coordinates are analytic functions from X (C∞) \ {∞} to C∞. For all integers i, we define dot products ζ φ · ω(i) φ as certain meromorphic differential forms over XC∞ \ {∞} and prove they are actually rational. This amounts to a generalization of Pellarin’s identity for the Carlitz module and is linked to the pairing of the A-motive and the dual A-motive defined by Hartl and Juschka. Finally, we develop an algorithm to compute the forms ζ φ · ω(i) φ when X = P1 and prove a conjecture of Gazda and Maurischat about the invertibility of special functions for Drinfeld modules of rank 1. 
650 4 |a Anderson modules 
650 4 |a Associative Rings and Algebras 
650 4 |a Category Theory, Homological Algebra 
650 4 |a Commutative Rings and Algebras 
650 4 |a Drinfeld modules 
650 4 |a Functions of a Complex Variable 
650 4 |a Pellarin L-series 
650 4 |a Several Complex Variables and Analytic Spaces 
650 4 |a Shtuka functions 
650 4 |a Special functions 
650 4 |a Special Functions 
773 0 8 |i Enthalten in  |t Research in the mathematical sciences  |d New York, NY [u.a.] : Springer, 2014  |g 12(2025), 2, Artikel-ID 23, Seite 1-41  |h Online-Ressource  |w (DE-627)815914725  |w (DE-600)2806676-5  |w (DE-576)425059987  |x 2197-9847  |7 nnas  |a A duality result about special functions for Drinfeld modules of arbitrary rank 
773 1 8 |g volume:12  |g year:2025  |g number:2  |g elocationid:23  |g pages:1-41  |g extent:41  |a A duality result about special functions for Drinfeld modules of arbitrary rank 
856 4 0 |u https://doi.org/10.1007/s40687-025-00506-w  |x Verlag  |x Resolving-System  |z kostenfrei  |3 Volltext 
856 4 0 |u https://link.springer.com/article/10.1007/s40687-025-00506-w  |x Verlag  |z kostenfrei  |3 Volltext 
951 |a AR 
992 |a 20250807 
993 |a Article 
994 |a 2025 
998 |g 1373339152  |a Ferraro, Giacomo Hermes  |m 1373339152:Ferraro, Giacomo Hermes  |d 500000  |d 510326  |e 500000PF1373339152  |e 510326PF1373339152  |k 0/500000/  |k 1/500000/510326/  |p 1  |x j  |y j 
999 |a KXP-PPN193282197X  |e 4754975014 
BIB |a Y 
SER |a journal 
JSO |a {"type":{"bibl":"article-journal","media":"Online-Ressource"},"note":["Gesehen am 07.08.2025"],"language":["eng"],"recId":"193282197X","person":[{"roleDisplay":"VerfasserIn","display":"Ferraro, Giacomo Hermes","role":"aut","family":"Ferraro","given":"Giacomo Hermes"}],"title":[{"title":"A duality result about special functions for Drinfeld modules of arbitrary rank","title_sort":"duality result about special functions for Drinfeld modules of arbitrary rank"}],"physDesc":[{"extent":"41 S."}],"relHost":[{"part":{"year":"2025","issue":"2","pages":"1-41","text":"12(2025), 2, Artikel-ID 23, Seite 1-41","volume":"12","extent":"41"},"pubHistory":["1.2014 -"],"language":["eng"],"recId":"815914725","type":{"bibl":"periodical","media":"Online-Ressource"},"disp":"A duality result about special functions for Drinfeld modules of arbitrary rankResearch in the mathematical sciences","note":["Gesehen am 09.02.2015"],"title":[{"title":"Research in the mathematical sciences","title_sort":"Research in the mathematical sciences"}],"physDesc":[{"extent":"Online-Ressource"}],"id":{"zdb":["2806676-5"],"eki":["815914725"],"issn":["2197-9847"]},"origin":[{"publisher":"Springer","dateIssuedKey":"2014","dateIssuedDisp":"2014-","publisherPlace":"New York, NY [u.a.]"}]}],"name":{"displayForm":["Giacomo Hermes Ferraro"]},"origin":[{"dateIssuedKey":"2025","dateIssuedDisp":"12 March 2025"}],"id":{"doi":["10.1007/s40687-025-00506-w"],"eki":["193282197X"]}} 
SRT |a FERRAROGIADUALITYRES1220