LI-RADS-based hepatocellular carcinoma risk mapping using contrast-enhanced MRI and self-configuring deep learning

Background: Hepatocellular carcinoma (HCC) is often diagnosed using gadoxetate disodium-enhanced magnetic resonance imaging (EOB-MRI). Standardized reporting according to the Liver Imaging Reporting and Data System (LI-RADS) can improve Gd-MRI interpretation but is rather complex and time-consuming....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Stollmayer, Róbert (VerfasserIn) , Güven, Selda (VerfasserIn) , Heidt, Christian (VerfasserIn) , Schlamp, Kai (VerfasserIn) , Kaposi, Pál Novák (VerfasserIn) , Stackelberg, Oyunbileg von (VerfasserIn) , Kauczor, Hans-Ulrich (VerfasserIn) , Klauß, Miriam (VerfasserIn) , Mayer, Philipp (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 17 March 2025
In: Cancer imaging
Year: 2025, Jahrgang: 25, Pages: 1-17
ISSN:1470-7330
DOI:10.1186/s40644-025-00844-6
Online-Zugang:Verlag, kostenfrei, Volltext: https://doi.org/10.1186/s40644-025-00844-6
Volltext
Verfasserangaben:Róbert Stollmayer, Selda Güven, Christian Marcel Heidt, Kai Schlamp, Pál Novák Kaposi, Oyunbileg von Stackelberg, Hans-Ulrich Kauczor, Miriam Klauss and Philipp Mayer

MARC

LEADER 00000naa a2200000 c 4500
001 1933106581
003 DE-627
005 20250813110927.0
007 cr uuu---uuuuu
008 250813s2025 xx |||||o 00| ||eng c
024 7 |a 10.1186/s40644-025-00844-6  |2 doi 
035 |a (DE-627)1933106581 
035 |a (DE-599)KXP1933106581 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Stollmayer, Róbert  |e VerfasserIn  |0 (DE-588)1345106033  |0 (DE-627)1905866100  |4 aut 
245 1 0 |a LI-RADS-based hepatocellular carcinoma risk mapping using contrast-enhanced MRI and self-configuring deep learning  |c Róbert Stollmayer, Selda Güven, Christian Marcel Heidt, Kai Schlamp, Pál Novák Kaposi, Oyunbileg von Stackelberg, Hans-Ulrich Kauczor, Miriam Klauss and Philipp Mayer 
264 1 |c 17 March 2025 
300 |b Illustrationen 
300 |a 17 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 13.08.2025 
520 |a Background: Hepatocellular carcinoma (HCC) is often diagnosed using gadoxetate disodium-enhanced magnetic resonance imaging (EOB-MRI). Standardized reporting according to the Liver Imaging Reporting and Data System (LI-RADS) can improve Gd-MRI interpretation but is rather complex and time-consuming. These limitations could potentially be alleviated using recent deep learning-based segmentation and classification methods such as nnU-Net. The study aims to create and evaluate an automatic segmentation model for HCC risk assessment, according to LI-RADS v2018 using nnU-Net. Methods: For this single-center retrospective study, 602 patients at risk for HCC were included, who had dynamic EOB-MRI examinations between 05/2005 and 09/2022, containing ≥ LR-3 lesion(s). Manual lesion segmentations in semantic segmentation masks as LR-3, LR-4, LR-5 or LR-M served as ground truth. A set of U-Net models with 14 input channels was trained using the nnU-Net framework for automatic segmentation. Lesion detection, LI-RADS classification, and instance segmentation metrics were calculated by post-processing the semantic segmentation outputs of the final model ensemble. For the external evaluation, a modified version of the LiverHccSeg dataset was used. Results: The final training/internal test/external test cohorts included 383/219/16 patients. In the three cohorts, LI-RADS lesions (≥ LR-3 and LR-M) ≥ 10 mm were detected with sensitivities of 0.41–0.85/0.40–0.90/0.83 (LR-5: 0.85/0.90/0.83) and positive predictive values of 0.70–0.94/0.67–0.88/0.90 (LR-5: 0.94/0.88/0.90). F1 scores for LI-RADS classification of detected lesions ranged between 0.48–0.69/0.47–0.74/0.84 (LR-5: 0.69/0.74/0.84). Median per lesion Sørensen–Dice coefficients were between 0.61–0.74/0.52–0.77/0.84 (LR-5: 0.74/0.77/0.84). Conclusion: Deep learning-based HCC risk assessment according to LI-RADS can be implemented as automatically generated tumor risk maps using out-of-the-box image segmentation tools with high detection performance for LR-5 lesions. Before translation into clinical practice, further improvements in automatic LI-RADS classification, for example through large multi-center studies, would be desirable. 
650 4 |a Clinical guidelines 
650 4 |a Deep learning 
650 4 |a Hepatocellular carcinoma 
650 4 |a Multiparametric MRI 
700 1 |a Güven, Selda  |e VerfasserIn  |4 aut 
700 1 |a Heidt, Christian  |e VerfasserIn  |0 (DE-588)1312342420  |0 (DE-627)187212755X  |4 aut 
700 1 |a Schlamp, Kai  |d 1976-  |e VerfasserIn  |0 (DE-588)14182641X  |0 (DE-627)631821422  |0 (DE-576)326357254  |4 aut 
700 1 |a Kaposi, Pál Novák  |e VerfasserIn  |4 aut 
700 1 |a Stackelberg, Oyunbileg von  |e VerfasserIn  |0 (DE-588)1071738429  |0 (DE-627)826301487  |0 (DE-576)433285168  |4 aut 
700 1 |a Kauczor, Hans-Ulrich  |d 1962-  |e VerfasserIn  |0 (DE-588)139267123  |0 (DE-627)70327113X  |0 (DE-576)310955327  |4 aut 
700 1 |a Klauß, Miriam  |d 1978-  |e VerfasserIn  |0 (DE-588)130870552  |0 (DE-627)506783839  |0 (DE-576)29838728X  |4 aut 
700 1 |a Mayer, Philipp  |d 1985-  |e VerfasserIn  |0 (DE-588)1066605440  |0 (DE-627)817714758  |0 (DE-576)426052250  |4 aut 
773 0 8 |i Enthalten in  |t Cancer imaging  |d London : BioMed Central, 2000  |g 25(2025), Artikel-ID 36, Seite 1-17  |h Online-Ressource  |w (DE-627)36374732X  |w (DE-600)2104862-9  |w (DE-576)34726624X  |x 1470-7330  |7 nnas  |a LI-RADS-based hepatocellular carcinoma risk mapping using contrast-enhanced MRI and self-configuring deep learning 
773 1 8 |g volume:25  |g year:2025  |g elocationid:36  |g pages:1-17  |g extent:17  |a LI-RADS-based hepatocellular carcinoma risk mapping using contrast-enhanced MRI and self-configuring deep learning 
856 4 0 |u https://doi.org/10.1186/s40644-025-00844-6  |x Verlag  |x Resolving-System  |z kostenfrei  |3 Volltext 
951 |a AR 
992 |a 20250813 
993 |a Article 
994 |a 2025 
998 |g 1066605440  |a Mayer, Philipp  |m 1066605440:Mayer, Philipp  |d 910000  |d 911400  |e 910000PM1066605440  |e 911400PM1066605440  |k 0/910000/  |k 1/910000/911400/  |p 9  |y j 
998 |g 130870552  |a Klauß, Miriam  |m 130870552:Klauß, Miriam  |d 910000  |d 911400  |d 50000  |e 910000PK130870552  |e 911400PK130870552  |e 50000PK130870552  |k 0/910000/  |k 1/910000/911400/  |k 0/50000/  |p 8 
998 |g 139267123  |a Kauczor, Hans-Ulrich  |m 139267123:Kauczor, Hans-Ulrich  |d 910000  |d 911400  |e 910000PK139267123  |e 911400PK139267123  |k 0/910000/  |k 1/910000/911400/  |p 7 
998 |g 1071738429  |a Stackelberg, Oyunbileg von  |m 1071738429:Stackelberg, Oyunbileg von  |d 60000  |d 62600  |e 60000PS1071738429  |e 62600PS1071738429  |k 0/60000/  |k 1/60000/62600/  |p 6 
998 |g 14182641X  |a Schlamp, Kai  |m 14182641X:Schlamp, Kai  |d 910000  |d 950000  |d 950900  |e 910000PS14182641X  |e 950000PS14182641X  |e 950900PS14182641X  |k 0/910000/  |k 1/910000/950000/  |k 2/910000/950000/950900/  |p 4 
998 |g 1312342420  |a Heidt, Christian  |m 1312342420:Heidt, Christian  |d 910000  |d 911400  |e 910000PH1312342420  |e 911400PH1312342420  |k 0/910000/  |k 1/910000/911400/  |p 3 
998 |g 1345106033  |a Stollmayer, Róbert  |m 1345106033:Stollmayer, Róbert  |d 910000  |d 911400  |e 910000PS1345106033  |e 911400PS1345106033  |k 0/910000/  |k 1/910000/911400/  |p 1  |x j 
999 |a KXP-PPN1933106581  |e 4756949789 
BIB |a Y 
SER |a journal 
JSO |a {"recId":"1933106581","person":[{"role":"aut","family":"Stollmayer","given":"Róbert","display":"Stollmayer, Róbert"},{"family":"Güven","role":"aut","display":"Güven, Selda","given":"Selda"},{"given":"Christian","display":"Heidt, Christian","role":"aut","family":"Heidt"},{"display":"Schlamp, Kai","given":"Kai","family":"Schlamp","role":"aut"},{"display":"Kaposi, Pál Novák","given":"Pál Novák","role":"aut","family":"Kaposi"},{"role":"aut","family":"Stackelberg","given":"Oyunbileg von","display":"Stackelberg, Oyunbileg von"},{"display":"Kauczor, Hans-Ulrich","given":"Hans-Ulrich","role":"aut","family":"Kauczor"},{"display":"Klauß, Miriam","given":"Miriam","family":"Klauß","role":"aut"},{"given":"Philipp","display":"Mayer, Philipp","family":"Mayer","role":"aut"}],"note":["Gesehen am 13.08.2025"],"language":["eng"],"name":{"displayForm":["Róbert Stollmayer, Selda Güven, Christian Marcel Heidt, Kai Schlamp, Pál Novák Kaposi, Oyunbileg von Stackelberg, Hans-Ulrich Kauczor, Miriam Klauss and Philipp Mayer"]},"relHost":[{"recId":"36374732X","origin":[{"publisherPlace":"London ; Heidelberg ; New York, NY","dateIssuedKey":"2000","dateIssuedDisp":"2000-","publisher":"BioMed Central ; BMC, part of Springer Nature"}],"physDesc":[{"extent":"Online-Ressource"}],"id":{"zdb":["2104862-9"],"eki":["36374732X"],"issn":["1470-7330"]},"title":[{"subtitle":"the official publication of the International Cancer Imaging Society","title":"Cancer imaging","title_sort":"Cancer imaging"}],"pubHistory":["1.2000 -"],"note":["Gesehen am 20.03.23"],"part":{"volume":"25","year":"2025","pages":"1-17","extent":"17","text":"25(2025), Artikel-ID 36, Seite 1-17"},"language":["eng"],"disp":"LI-RADS-based hepatocellular carcinoma risk mapping using contrast-enhanced MRI and self-configuring deep learningCancer imaging","type":{"bibl":"periodical","media":"Online-Ressource"}}],"origin":[{"dateIssuedKey":"2025","dateIssuedDisp":"17 March 2025"}],"title":[{"title":"LI-RADS-based hepatocellular carcinoma risk mapping using contrast-enhanced MRI and self-configuring deep learning","title_sort":"LI-RADS-based hepatocellular carcinoma risk mapping using contrast-enhanced MRI and self-configuring deep learning"}],"type":{"media":"Online-Ressource","bibl":"article-journal"},"physDesc":[{"extent":"17 S.","noteIll":"Illustrationen"}],"id":{"eki":["1933106581"],"doi":["10.1186/s40644-025-00844-6"]}} 
SRT |a STOLLMAYERLIRADSBASE1720