Unimodular totally disconnected locally compact groups of rational discrete cohomological dimension one

It is shown that a Stallings-Swan theorem holds in a totally disconnected locally compact (= t.d.l.c.) context (cf. Theorem B). More precisely, a compactly generated $${\mathcal{C}\mathcal{O}}$$-bounded t.d.l.c. group G of rational discrete cohomological dimension less than or equal to 1 must be iso...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Castellano, Ilaria (VerfasserIn) , Marchionna, Bianca (VerfasserIn) , Weigel, Thomas (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: May 2025
In: Mathematische Annalen
Year: 2025, Jahrgang: 392, Heft: 1, Pages: 933-964
ISSN:1432-1807
DOI:10.1007/s00208-025-03116-7
Online-Zugang:Verlag, kostenfrei, Volltext: https://doi.org/10.1007/s00208-025-03116-7
Verlag, lizenzpflichtig, Volltext: https://https://link.springer.com/article/10.1007/s00208-025-03116-7
Volltext
Verfasserangaben:Ilaria Castellano, Bianca Marchionna, Thomas Weigel
Beschreibung
Zusammenfassung:It is shown that a Stallings-Swan theorem holds in a totally disconnected locally compact (= t.d.l.c.) context (cf. Theorem B). More precisely, a compactly generated $${\mathcal{C}\mathcal{O}}$$-bounded t.d.l.c. group G of rational discrete cohomological dimension less than or equal to 1 must be isomorphic to the fundamental group of a finite graph of profinite groups. This result generalises Dunwoody’s rational version of the classical Stallings-Swan theorem to t.d.l.c. groups. The proof of Theorem B is based on the fact that a compactly generated unimodular t.d.l.c. group with rational discrete cohomological dimension 1 has necessarily non-positive Euler-Poincaré characteristic (cf. Theorem H).
Beschreibung:Gesehen am 26.08.2025
Online veröffentlicht am 25. Februar 2025
Beschreibung:Online Resource
ISSN:1432-1807
DOI:10.1007/s00208-025-03116-7