ApprOchs: a Memristor-based in-memory adaptive approximate adder

As silicon scaling nears its limits and the Big Data era unfolds, in-memory computing is increasingly important for overcoming the Von Neumann bottleneck and thus enhancing modern computing performance. One of the rising in-memory technologies are Memristors, which are resistors capable of memorizin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Ochs, Dominik (VerfasserIn) , Rapp, Lukas (VerfasserIn) , Borzyk, Leandro (VerfasserIn) , Amirafshar, Nima (VerfasserIn) , Taherinejad, Nima (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 31 January 2025
In: IEEE journal on emerging and selected topics in circuits and systems
Year: 2025, Jahrgang: 15, Heft: 1, Pages: 105-119
ISSN:2156-3365
DOI:10.1109/JETCAS.2025.3537328
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1109/JETCAS.2025.3537328
Verlag, lizenzpflichtig, Volltext: https://ieeexplore.ieee.org/document/10859167/authors
Volltext
Verfasserangaben:Dominik Ochs, Lukas Rapp, Leandro Borzyk, Nima Amirafshar, Nima TaheriNejad

MARC

LEADER 00000naa a2200000 c 4500
001 1934994383
003 DE-627
005 20250829121927.0
007 cr uuu---uuuuu
008 250829s2025 xx |||||o 00| ||eng c
024 7 |a 10.1109/JETCAS.2025.3537328  |2 doi 
035 |a (DE-627)1934994383 
035 |a (DE-599)KXP1934994383 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 28  |2 sdnb 
100 1 |a Ochs, Dominik  |e VerfasserIn  |0 (DE-588)1375086642  |0 (DE-627)1934996432  |4 aut 
245 1 0 |a ApprOchs  |b a Memristor-based in-memory adaptive approximate adder  |c Dominik Ochs, Lukas Rapp, Leandro Borzyk, Nima Amirafshar, Nima TaheriNejad 
264 1 |c 31 January 2025 
300 |a 15 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 29.08.2025 
520 |a As silicon scaling nears its limits and the Big Data era unfolds, in-memory computing is increasingly important for overcoming the Von Neumann bottleneck and thus enhancing modern computing performance. One of the rising in-memory technologies are Memristors, which are resistors capable of memorizing state based on an applied voltage, making them useful for storage and computation. Another emerging computing paradigm is Approximate Computing, which allows for errors in calculations to in turn reduce die area, processing time and energy consumption. In an attempt to combine both concepts and leverage their benefits, we propose the memristor-based adaptive approximate adder ApprOchs - which is able to selectively compute segments of an addition either approximately or exactly. ApprOchs is designed to adapt to the input data given and thus only compute as much as is needed, a quality current State-of-the-Art (SoA) in-memory adders lack. Despite also using OR-based approximation in the lower k bit, ApprOchs has the edge over S-SINC because ApprOchs can skip the computation of the upper n-k bit for a small number of possible input combinations (22k of 22n possible combinations skip the upper bits). Compared to SoA in-memory approximate adders, ApprOchs outperforms them in terms of energy consumption while being highly competitive in terms of error behavior, with moderate speed and area efficiency. In application use cases, ApprOchs demonstrates its energy efficiency, particularly in machine learning applications. In MNIST classification using Deep Convolutional Neural Networks, we achieve 78.4% energy savings compared to SoA approximate adders with the same accuracy as exact adders at 98.9%, while for k-means clustering, we observed a 69% reduction in energy consumption with no quality drop in clustering results compared to the exact computation. For image blurring, we achieve up to 32.7% energy reduction over the exact computation and in its most promising configuration ( k=3 ), the ApprOchs adder consumes 13.4% less energy than the most energy-efficient competing SoA design (S-SINC+), while achieving a similarly excellent median image quality at 43.74dB PSNR and 0.995 SSIM. 
650 4 |a Accuracy 
650 4 |a adaptive adder 
650 4 |a Adders 
650 4 |a approximate computing 
650 4 |a Approximate computing 
650 4 |a Energy consumption 
650 4 |a in-memory computing 
650 4 |a In-memory computing 
650 4 |a Logic 
650 4 |a Machine learning 
650 4 |a Memristive computing 
650 4 |a Memristors 
650 4 |a Runtime 
650 4 |a Topology 
700 1 |a Rapp, Lukas  |e VerfasserIn  |4 aut 
700 1 |a Borzyk, Leandro  |e VerfasserIn  |4 aut 
700 1 |a Amirafshar, Nima  |e VerfasserIn  |0 (DE-588)1375086855  |0 (DE-627)1934997021  |4 aut 
700 1 |a Taherinejad, Nima  |e VerfasserIn  |0 (DE-588)127517549X  |0 (DE-627)1826739688  |4 aut 
773 0 8 |i Enthalten in  |a Institute of Electrical and Electronics Engineers  |t IEEE journal on emerging and selected topics in circuits and systems  |d New York, NY : IEEE, 2011  |g 15(2025), 1, Seite 105-119  |h Online-Ressource  |w (DE-627)641892020  |w (DE-600)2585706-X  |w (DE-576)346016835  |x 2156-3365  |7 nnas 
773 1 8 |g volume:15  |g year:2025  |g number:1  |g pages:105-119  |g extent:15  |a ApprOchs a Memristor-based in-memory adaptive approximate adder 
856 4 0 |u https://doi.org/10.1109/JETCAS.2025.3537328  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u https://ieeexplore.ieee.org/document/10859167/authors  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20250829 
993 |a Article 
994 |a 2025 
998 |g 127517549X  |a Taherinejad, Nima  |m 127517549X:Taherinejad, Nima  |d 700000  |d 720000  |e 700000PT127517549X  |e 720000PT127517549X  |k 0/700000/  |k 1/700000/720000/  |p 5  |y j 
998 |g 1375086855  |a Amirafshar, Nima  |m 1375086855:Amirafshar, Nima  |d 700000  |d 720000  |e 700000PA1375086855  |e 720000PA1375086855  |k 0/700000/  |k 1/700000/720000/  |p 4 
999 |a KXP-PPN1934994383  |e 4765808319 
BIB |a Y 
SER |a journal 
JSO |a {"type":{"bibl":"article-journal","media":"Online-Ressource"},"recId":"1934994383","origin":[{"dateIssuedDisp":"31 January 2025","dateIssuedKey":"2025"}],"id":{"eki":["1934994383"],"doi":["10.1109/JETCAS.2025.3537328"]},"physDesc":[{"extent":"15 S."}],"relHost":[{"type":{"bibl":"periodical","media":"Online-Ressource"},"recId":"641892020","origin":[{"publisherPlace":"New York, NY","dateIssuedDisp":"2011-","publisher":"IEEE","dateIssuedKey":"2011"}],"corporate":[{"display":"Institute of Electrical and Electronics Engineers","role":"aut"}],"disp":"Institute of Electrical and Electronics EngineersIEEE journal on emerging and selected topics in circuits and systems","physDesc":[{"extent":"Online-Ressource"}],"id":{"issn":["2156-3365"],"zdb":["2585706-X"],"eki":["641892020"]},"name":{"displayForm":["Institute of Electrical and Electronics Engineers"]},"pubHistory":["1.2011 -"],"part":{"text":"15(2025), 1, Seite 105-119","year":"2025","volume":"15","issue":"1","extent":"15","pages":"105-119"},"language":["eng"],"title":[{"title":"IEEE journal on emerging and selected topics in circuits and systems","title_sort":"IEEE journal on emerging and selected topics in circuits and systems"}]}],"note":["Gesehen am 29.08.2025"],"name":{"displayForm":["Dominik Ochs, Lukas Rapp, Leandro Borzyk, Nima Amirafshar, Nima TaheriNejad"]},"person":[{"family":"Ochs","display":"Ochs, Dominik","role":"aut","given":"Dominik"},{"family":"Rapp","role":"aut","given":"Lukas","display":"Rapp, Lukas"},{"display":"Borzyk, Leandro","role":"aut","given":"Leandro","family":"Borzyk"},{"role":"aut","given":"Nima","display":"Amirafshar, Nima","family":"Amirafshar"},{"given":"Nima","role":"aut","display":"Taherinejad, Nima","family":"Taherinejad"}],"title":[{"title":"ApprOchs","subtitle":"a Memristor-based in-memory adaptive approximate adder","title_sort":"ApprOchs"}],"language":["eng"]} 
SRT |a OCHSDOMINIAPPROCHS3120