Deep learning-based cone-beam CT motion compensation with single-view temporal resolution

Background Cone-beam CT (CBCT) scans that are affected by motion often require motion compensation to reduce artifacts or to reconstruct 4D (3D+time) representations of the patient. To do so, most existing strategies rely on some sort of gating strategy that sorts the acquired projections into motio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Maier, Joscha (VerfasserIn) , Sawall, Stefan (VerfasserIn) , Arheit, Marcel (VerfasserIn) , Paysan, Pascal (VerfasserIn) , Kachelrieß, Marc (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: July 2025
In: Medical physics
Year: 2025, Jahrgang: 52, Heft: 7, Pages: 1-13
ISSN:2473-4209
DOI:10.1002/mp.17911
Online-Zugang:Verlag, kostenfrei, Volltext: https://doi.org/10.1002/mp.17911
Verlag, kostenfrei, Volltext: https://onlinelibrary.wiley.com/doi/abs/10.1002/mp.17911
Volltext
Verfasserangaben:Joscha Maier, Stefan Sawall, Marcel Arheit, Pascal Paysan, Marc Kachelrieß

MARC

LEADER 00000caa a2200000 c 4500
001 1935954911
003 DE-627
005 20251209015521.0
007 cr uuu---uuuuu
008 250915s2025 xx |||||o 00| ||eng c
024 7 |a 10.1002/mp.17911  |2 doi 
035 |a (DE-627)1935954911 
035 |a (DE-599)KXP1935954911 
035 |a (OCoLC)1559705581 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Maier, Joscha  |d 1988-  |e VerfasserIn  |0 (DE-588)1185600868  |0 (DE-627)1664987231  |4 aut 
245 1 0 |a Deep learning-based cone-beam CT motion compensation with single-view temporal resolution  |c Joscha Maier, Stefan Sawall, Marcel Arheit, Pascal Paysan, Marc Kachelrieß 
264 1 |c July 2025 
300 |b Illustrationen 
300 |a 13 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Zuerst veröffentlicht: 4. Juni 2025 
500 |a Gesehen am 15.09.2025 
520 |a Background Cone-beam CT (CBCT) scans that are affected by motion often require motion compensation to reduce artifacts or to reconstruct 4D (3D+time) representations of the patient. To do so, most existing strategies rely on some sort of gating strategy that sorts the acquired projections into motion bins. Subsequently, these bins can be reconstructed individually before further post-processing may be applied to improve image quality. While this concept is useful for periodic motion patterns, it fails in case of non-periodic motion as observed, for example, in irregularly breathing patients. Purpose To address this issue and to increase temporal resolution, we propose the deep single angle-based motion compensation (SAMoCo). Methods To avoid gating, and therefore its downsides, the deep SAMoCo trains a U-net-like network to predict displacement vector fields (DVFs) representing the motion that occurred between any two given time points of the scan. To do so, 4D clinical CT scans are used to simulate 4D CBCT scans as well as the corresponding ground truth DVFs that map between the different motion states of the scan. The network is then trained to predict these DVFs as a function of the respective projection views and an initial 3D reconstruction. Once the network is trained, an arbitrary motion state corresponding to a certain projection view of the scan can be recovered by estimating DVFs from any other state or view and by considering them during reconstruction. Results Applied to 4D CBCT simulations of breathing patients, the deep SAMoCo provides high-quality reconstructions for periodic and non-periodic motion. Here, the deviations with respect to the ground truth are less than 27 HU on average, while respiratory motion, or the diaphragm position, can be resolved with an accuracy of about 0.75 mm. Similar results were obtained for real measurements where a high correlation with external motion monitoring signals could be observed, even in patients with highly irregular respiration. Conclusions The ability to estimate DVFs as a function of two arbitrary projection views and an initial 3D reconstruction makes deep SAMoCo applicable to arbitrary motion patterns with single-view temporal resolution. Therefore, the deep SAMoCo is particularly useful for cases with unsteady breathing, compensation of residual motion during a breath-hold scan, or scans with fast gantry rotation times in which the data acquisition only covers a very limited number of breathing cycles. Furthermore, not requiring gating signals may simplify the clinical workflow and reduces the time needed for patient preparation. 
650 4 |a 4D CBCT 
650 4 |a deep learning 
650 4 |a motion compensation 
700 1 |a Sawall, Stefan  |d 1985-  |e VerfasserIn  |0 (DE-588)1031331298  |0 (DE-627)736275746  |0 (DE-576)378788841  |4 aut 
700 1 |a Arheit, Marcel  |e VerfasserIn  |4 aut 
700 1 |a Paysan, Pascal  |e VerfasserIn  |4 aut 
700 1 |a Kachelrieß, Marc  |d 1969-  |e VerfasserIn  |0 (DE-588)120866544  |0 (DE-627)705049280  |0 (DE-576)292422725  |4 aut 
773 0 8 |i Enthalten in  |t Medical physics  |d Hoboken, NJ : Wiley, 1974  |g 52(2025), 7 vom: Juli, Artikel-ID e17911, Seite 1-13  |h Online-Ressource  |w (DE-627)265784867  |w (DE-600)1466421-5  |w (DE-576)074891243  |x 2473-4209  |7 nnas  |a Deep learning-based cone-beam CT motion compensation with single-view temporal resolution 
773 1 8 |g volume:52  |g year:2025  |g number:7  |g month:07  |g elocationid:e17911  |g pages:1-13  |g extent:13  |a Deep learning-based cone-beam CT motion compensation with single-view temporal resolution 
856 4 0 |u https://doi.org/10.1002/mp.17911  |x Verlag  |x Resolving-System  |z kostenfrei  |3 Volltext  |7 0 
856 4 0 |u https://onlinelibrary.wiley.com/doi/abs/10.1002/mp.17911  |x Verlag  |z kostenfrei  |3 Volltext  |7 0 
951 |a AR 
992 |a 20250915 
993 |a Article 
994 |a 2025 
998 |g 120866544  |a Kachelrieß, Marc  |m 120866544:Kachelrieß, Marc  |d 50000  |e 50000PK120866544  |k 0/50000/  |p 5  |y j 
998 |g 1031331298  |a Sawall, Stefan  |m 1031331298:Sawall, Stefan  |d 50000  |e 50000PS1031331298  |k 0/50000/  |p 2 
999 |a KXP-PPN1935954911  |e 477232898X 
BIB |a Y 
SER |a journal 
JSO |a {"recId":"1935954911","name":{"displayForm":["Joscha Maier, Stefan Sawall, Marcel Arheit, Pascal Paysan, Marc Kachelrieß"]},"physDesc":[{"noteIll":"Illustrationen","extent":"13 S."}],"relHost":[{"name":{"displayForm":["American Association of Physicists in Medicine ; American Institute of Physics"]},"physDesc":[{"extent":"Online-Ressource"}],"pubHistory":["1.1974 -"],"recId":"265784867","id":{"zdb":["1466421-5"],"eki":["265784867"],"issn":["2473-4209","1522-8541"]},"disp":"Deep learning-based cone-beam CT motion compensation with single-view temporal resolutionMedical physics","note":["Gesehen am 01.08.2025"],"type":{"media":"Online-Ressource","bibl":"periodical"},"origin":[{"dateIssuedKey":"1974","publisher":"Wiley ; AAPM ; [Verlag nicht ermittelbar]","publisherPlace":"Hoboken, NJ ; College Park, Md. ; New York, NY","dateIssuedDisp":"1974-"}],"titleAlt":[{"title":"Medical physics online"}],"title":[{"title":"Medical physics","title_sort":"Medical physics"}],"part":{"year":"2025","pages":"1-13","text":"52(2025), 7 vom: Juli, Artikel-ID e17911, Seite 1-13","extent":"13","volume":"52","issue":"7"},"language":["eng"]}],"id":{"eki":["1935954911"],"doi":["10.1002/mp.17911"]},"person":[{"given":"Joscha","role":"aut","display":"Maier, Joscha","family":"Maier"},{"role":"aut","given":"Stefan","display":"Sawall, Stefan","family":"Sawall"},{"role":"aut","given":"Marcel","display":"Arheit, Marcel","family":"Arheit"},{"display":"Paysan, Pascal","family":"Paysan","role":"aut","given":"Pascal"},{"display":"Kachelrieß, Marc","family":"Kachelrieß","given":"Marc","role":"aut"}],"language":["eng"],"note":["Zuerst veröffentlicht: 4. Juni 2025","Gesehen am 15.09.2025"],"type":{"media":"Online-Ressource","bibl":"article-journal"},"origin":[{"dateIssuedKey":"2025","dateIssuedDisp":"July 2025"}],"title":[{"title":"Deep learning-based cone-beam CT motion compensation with single-view temporal resolution","title_sort":"Deep learning-based cone-beam CT motion compensation with single-view temporal resolution"}]} 
SRT |a MAIERJOSCHDEEPLEARNI2025