Machine learning in parameter estimation of nonlinear systems
Accurate parameter estimation in nonlinear dynamical systems remains a fundamental challenge due to noise, limited data, and model complexity. Traditional methods, such as gradient-based optimization and nonlinear least squares (NLS), often struggle under real-world multiplicative noise, exhibiting...
Gespeichert in:
| Hauptverfasser: | , |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
09 April 2025
|
| In: |
The European physical journal. B, Condensed matter and complex systems
Year: 2025, Jahrgang: 98, Heft: 4, Pages: 1-18 |
| ISSN: | 1434-6036 |
| DOI: | 10.1140/epjb/s10051-025-00904-7 |
| Online-Zugang: | Verlag, kostenfrei, Volltext: https://doi.org/10.1140/epjb/s10051-025-00904-7 |
| Verfasserangaben: | Kaushal Kumar and Ekaterina Kostina |
| Zusammenfassung: | Accurate parameter estimation in nonlinear dynamical systems remains a fundamental challenge due to noise, limited data, and model complexity. Traditional methods, such as gradient-based optimization and nonlinear least squares (NLS), often struggle under real-world multiplicative noise, exhibiting sensitivity to outliers and high computational demands. This study introduces a neural network framework integrating the Huber loss function to achieve robust and efficient parameter estimation. Applied to canonical dynamical systems, including damped oscillators, van der Pol oscillators, Lotka-Volterra models, and chaotic Lorenz dynamics, the proposed method demonstrates superior accuracy and resilience to noise. Notably, it maintains sub-1.2\% relative errors for key parameters in the Lorenz system, significantly outperforming NLS, which diverges with errors exceeding 12% under identical noise conditions. The use of SiLU activation improves convergence, yielding statistically significant reductions in estimation errors (p < 0.01). Furthermore, the framework operates up to 8 X faster than conventional optimization techniques while reducing root-mean-square error by over 99.9% in high-noise regimes. These results establish a robust, data-driven approach for parameter estimation in complex dynamical systems, bridging machine learning with nonlinear physics and enabling real-time applications in noisy environments. |
|---|---|
| Beschreibung: | Gesehen am 26.09.2025 |
| Beschreibung: | Online Resource |
| ISSN: | 1434-6036 |
| DOI: | 10.1140/epjb/s10051-025-00904-7 |